The Merrifield-Simmons index in ($n, n+1$)-graphs

Hanyuan Deng*, Shubo Chen and Jie Zhang
College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China
E-mail: hydeng@hunnu.edu.cn

Received 9 June 2006; revised 27 June 2006

Abstract

A $(n, n+1)$-graph G is a connected simple graph with n vertices and $n+1$ edges. In this paper, we determine the upper bound for the Merrifield-Simmons index in ($n, n+$ $1)$-graphs in terms of the order n, and characterize the ($n, n+1$)-graph with the largest Merrifield-Simmons index.

KEY WORDS: $(n, n+1)$-graph, Merrifield-Simmons index

1. Introduction

Let $G=(V, E)$ be a simple connected graph with the vertex set $V(G)$ and the edge set $E(G)$. For any $v \in V, N_{G}(v)=\{u \mid u v \in E(G)\}$ denotes the neighbors of v, and $d_{G}(v)=\left|N_{G}(v)\right|$ is the degree of v in $G ; N_{G}[v]=\{v\} \cup N_{G}(v)$. A leaf is a vertex of degree one and a stem is a vertex adjacent to at least one leaf. Let $E^{\prime} \subseteq E(G)$, we denote by $G-E^{\prime}$ the subgraph of G obtained by deleting the edges of $E^{\prime} . W \subseteq V(G), G-W$ denotes the subgraph of G obtained by deleting the vertices of W and the edges incident with them. If a graph G has components $G_{1}, G_{2}, \ldots, G_{t}$, then G is denoted by $\bigcup_{i=1}^{t} G_{i} . P_{n}$ denotes the path on n vertices, C_{n} is the cycle on n vertices, and S_{n} is the star consisting of one center vertex adjacent to $n-1$ leaves.

For a graph $G=(V, E)$, a subset $S \subseteq V$ is called independent if no two vertices of S are adjacent in G. The set of independent sets in G is denoted by $I(G)$. The empty set is an independent set. The number of independent sets in G, denoted by $i(G)$, is called the Merrifield-Simmons index or σ-index in theoretical chemistry.

The Merrifield-Simmons index [1-3] is one of the topological indices whose mathematical properties were studied in some detail [4-12] whereas its applicability for QSPR and QSAR was examined to a much lesser extent; in [2] it was shown that $i(G)$ is correlated with the boiling points.

[^0]For the Merrifield-Simmons index, bounds for several classes of graphs were given. For instance, it was observed in [4] that the star S_{n} and the path P_{n} have the largest and the smallest Fibonacci number among all trees with n vertices, respectively; $i\left(S_{n}\right)=2^{n-1}+1$ and $i\left(P_{n}\right)=f(n+2)$, where $f(0)=0, f(1)=1$ and $f(n)=f(n-1)+f(n-2)$ for $n \geqslant 2$ denotes the sequence of Fibonacci numbers. This is perhaps why some authors [4] called $i(G)$ the Fibonacci number of the graph. Pedersen and Vestergaard [12] gave upper and lower bounds in unicyclic graphs in terms of order and characterized the extremal graphs, [11] determined the tree with the largest Merrifield-Simmons index among all trees with n vertices and with diameter k. For further details on the Merrifield-Simmons index (see the book [2], the papers [4-12] and the references cited therein).

Let x and y be two vertices in G. The set of independent sets in which contain the vertex x is denoted by $I_{x}(G)$, while $I_{-x}(G)$ denotes the set of independent sets which do not contain x. Then
(i) $i(G)=\left|I_{-x}(G)\right|+\left|I_{x}(G)\right|=i(G-\{x\})+i\left(G-N_{G}[x]\right)$.
(ii) If x and y are not adjacent in G, then
$i(G)=i(G-\{x, y\})+i\left(G-\{x\} \cup N_{G}[y]\right)+i\left(G-\{y\} \cup N_{G}[x]\right)+i(G-$ $\left.N_{G}[x] \cup N_{G}[y]\right)$.
(iii) If x and y are adjacent in G, then $i(G)=i(G-\{x, y\})+i\left(G-N_{G}[y]\right)+i\left(G-N_{G}[x]\right)$.
(iv) If G is a graph with components $G_{1}, G_{2}, G_{3}, \ldots, G_{k}$, then $i(G)=$ $\prod_{i=1}^{k} i\left(G_{i}\right)$.
(v) $i\left(P_{n}\right)=f(n+2)$ for any $n \in \mathbb{N}$;
$i\left(C_{n}\right)=f(n-1)+f(n+1)$ for any $n \geqslant 3$.
In this paper, we investigate the Merrifield-Simmons index of $(n, n+$ $1)-$ graphs, i.e., connected simple graphs with n vertices and $n+1$ edges. We characterize the $(n, n+1)$-graph among all $(n, n+1)$-graphs with the largest Mer-rifield-Simmons index.

Let $\mathcal{G}(n, n+1)$ be the set of simple connected graphs with n vertices and $n+1$ edges. For any graph $G \in \mathcal{G}(n, n+1)$, there are two cycles C_{p} and C_{q} in G. As in [13], we divide all the $(n, n+1)$-graphs with two cycles of lengths p and q into three classes.
(1) $\mathcal{A}(p, q)$ is the set of $G \in \mathcal{G}(n, n+1)$ in which the cycles C_{p} and C_{q} have only one common vertex.
(2) $\mathcal{B}(p, q)$ is the set of $G \in \mathcal{G}(n, n+1)$ in which the cycles C_{p} and C_{q} have no common vertex.

Figure 1. The induced subgraphs of vertices on the cycles of an $(\mathrm{n}, \mathrm{n}+1)$-graph

Figure 2. Transformation A.
(3) $\mathcal{C}(p, q, l)$ is the set of $G \in \mathcal{G}(n, n+1)$ in which the cycles C_{p} and C_{q} have a common path of length l.
Note that the induced subgraph of vertices on the cycles of $G \in \mathcal{A}(p, q)$ (or $\mathcal{B}(p, q), \mathcal{C}(p, q, l))$ is showed in figure 1 (a) (or (b),(c)), and $\mathcal{C}(p, q, l)=\mathcal{C}(p, p+$ $q-2 l, p-l)=\mathcal{C}(p+q-2 l, q, q-l)$.

2. Two transformations

Before our main results, we give two transformations which will increase the Merrifield-Simmons index as follows:

Transformation A. Let $u v$ be an edge $G, N_{G}(u)=\left\{v, w_{1}, w_{2}, \ldots, w_{s}\right\}$, and $w_{1}, w_{2}, \ldots, w_{s}$ are leaves. $G^{\prime}=G-\left\{v w_{1}, v w_{2}, \ldots, v w_{s}\right\}+\left\{u w_{1}, u w_{2}, \ldots, u w_{s}\right\}$, as shown in figure 2.

Lemma 2.1. Let G^{\prime} be obtained from G by transformation A, then

$$
i\left(G^{\prime}\right)>i(G) .
$$

Proof. Let $G_{0}=G-\left\{u, w_{1}, w_{2}, \ldots, w_{s}\right\}$. By the definition of the number of independent sets, we have

$$
\begin{aligned}
i(G) & =\left|I_{-v}(G)\right|+\left|I_{v}(G)\right| \\
& =i(G-\{v\})+i\left(G-N_{G}[v]\right) \\
& =\left(1+2^{s}\right) \cdot i\left(G_{0}-\{v\}\right)+2^{s} \cdot i\left(G_{0}-N_{G_{0}}[v]\right) \\
i\left(G^{\prime}\right) & =2^{s+1} \cdot i\left(G_{0}-\{v\}\right)+i\left(G_{0}-N_{G_{0}}[v]\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\Delta & =i\left(G^{\prime}\right)-i(G) \\
& =\left(2^{s}-1\right) \cdot\left(i\left(G_{0}-\{v\}\right)-i\left(G_{0}-N_{G_{0}}[v]\right)\right)>0
\end{aligned}
$$

since $\varphi(X)=X \cup\{v\}$ is an injection from $I\left(G_{0}-N_{G_{0}}[v]\right)$ to $I\left(G_{0}-\{v\}\right)$. Therefore, $i\left(G^{\prime}\right)>i(G)$.

Remark. Repeating transformation A, any ($n, n+1$) - graph can be changed into an $(n, n+1)$-graph such that all the edges not on the cycles are pendant edges.

Transformation B. Let u and v be two vertices in $G . u_{1}, u_{2}, \ldots, u_{s}$ are the leaves adjacent to $u, v_{1}, v_{2}, \ldots, v_{t}$ are the leaves adjacent to $v . G^{\prime}=G-$ $\left\{u u_{1}, u u_{2}, \ldots, u u_{s}\right\}+\left\{v u_{1}, v u_{2}, \ldots, v u_{s}\right\}, G^{\prime \prime}=G-\left\{v v_{1}, v v_{2}, \ldots, v v_{t}\right\}+\left\{u v_{1}, u v_{2}\right.$, $\left.\ldots, u v_{t}\right\}$ (figure 3).

Lemma 2.2. Let G^{\prime} and $G^{\prime \prime}$ be obtained from G by transformation B, then either $i\left(G^{\prime}\right)>i(G)$ or $i\left(G^{\prime \prime}\right)>i(G)$.

Proof. Let $G_{0}=G-\left\{u_{1}, u_{2}, \ldots, u_{s}, v_{1}, v_{2}, \ldots, v_{t}\right\}$.
(i) If u, v are not adjacent in G, then, by the definition of the number of independent sets, we have

Figure 3. Transformation B.

$$
\begin{aligned}
i(G)= & i(G-\{v\})+i\left(G-N_{G}[v]\right) \\
= & 2^{s+t} i\left(G_{0}-\{u, v\}\right)+2^{t} i\left(G_{0}-\{v\} \cup N_{G_{0}}[u]\right) \\
& +2^{s} i\left(G_{0}-\{u\} \cup N_{G_{0}}[v]\right)+i\left(G_{0}-N_{G_{0}}[v] \cup N_{G_{0}}[u]\right) \\
i\left(G^{\prime}\right)= & i(G-\{v\})+i\left(G-N_{G}[v]\right) \\
= & 2^{s+t}\left(i\left(G_{0}-\{u, v\}\right)+i\left(G_{0}-\{v\} \cup N_{G_{0}}[u]\right)\right) \\
& +i\left(G_{0}-\{u\} \cup N_{G_{0}}[v]\right)+i\left(G_{0}-N_{G_{0}}[v] \cup N_{G_{0}}[u]\right) \\
i\left(G^{\prime \prime}\right)= & i(G-\{v\})+i\left(G-N_{G}[v]\right) \\
= & 2^{s+t}\left(i\left(G_{0}-\{u, v\}\right)+i\left(G_{0}-\{u\} \cup N_{G_{0}}[v]\right)\right) \\
& +i\left(G_{0}-\{v\} \cup N_{G_{0}}[u]\right)+i\left(G_{0}-N_{G_{0}}[v] \cup N_{G_{0}}[u]\right) \\
\Delta_{1}= & i\left(G^{\prime}\right)-i(G) \\
= & \left(2^{s}-1\right)\left(2^{t} i\left(G_{0}-\{v\} \cup N_{G_{0}}[u]\right)-i\left(G_{0}-\{u\} \cup N_{G_{0}}[v]\right)\right) \\
\Delta_{2}= & i\left(G^{\prime \prime}\right)-i(G) \\
= & \left(2^{t}-1\right)\left(2^{s} i\left(G_{0}-\{u\} \cup N_{G_{0}}[v]\right)-i\left(G_{0}-\{v\} \cup N_{G_{0}}[u]\right)\right) .
\end{aligned}
$$

If $\Delta_{1}=i\left(G^{\prime}\right)-i(G) \leqslant 0$, then $i\left(G_{0}-\{u\} \cup N_{G_{0}}[v]\right) \geqslant 2^{t} i\left(G_{0}-\{v\} \cup\right.$ $N_{G_{0}}[u]$).
So, $\Delta_{2}=i\left(G^{\prime \prime}\right)-i(G) \geqslant\left(2^{t}-1\right)\left(2^{s+t}-1\right) i\left(G_{0}-\{v\} \cup N_{G_{0}}[u]\right)>0$.
(ii) If u, v are adjacent in G, then

$$
\begin{aligned}
i(G) & =2^{s+t} i\left(G_{0}-\{u, v\}\right)+2^{t} i\left(G_{0}-N_{G_{0}}[u]\right)+2^{s} i\left(G_{0}-N_{G_{0}}[v]\right) \\
i\left(G^{\prime}\right) & =i(G-\{v\})+i\left(G-N_{G}[v]\right) \\
& =2^{s+t}\left(i\left(G_{0}-\{u, v\}\right)+i\left(G_{0}-N_{G_{0}}[u]\right)\right)+i\left(G_{0}-N_{G_{0}}[v]\right) \\
i\left(G^{\prime \prime}\right) & =i(G-\{u\})+i\left(G-N_{G}[u]\right) \\
& =2^{s+t}\left(i\left(G_{0}-\{u, v\}\right)+i\left(G_{0}-N_{G_{0}}[v]\right)\right)+i\left(G_{0}-N_{G_{0}}[u]\right) \\
\Delta_{1} & =i\left(G^{\prime}\right)-i(G) \\
& =\left(2^{s}-1\right)\left(2^{t} i\left(G_{0}-N_{G_{0}}[u]\right)-i\left(G_{0}-N_{G_{0}}[v]\right)\right) \\
\Delta_{2} & =i\left(G^{\prime \prime}\right)-i(G) \\
& =\left(2^{t}-1\right)\left(2^{s} i\left(G_{0}-N_{G_{0}}[v]\right)-i\left(G_{0}-N_{G_{0}}[u]\right)\right) .
\end{aligned}
$$

If $\Delta_{1}=i\left(G^{\prime}\right)-i(G) \leqslant 0$, then $i\left(G_{0}-N_{G_{0}}[v]\right) \geqslant 2^{t} i\left(G_{0}-N_{G_{0}}[u]\right)$.
So, $\Delta_{2}=i\left(G^{\prime \prime}\right)-i(G) \geqslant\left(2^{t}-1\right)\left(2^{s+t}-1\right) i\left(G_{0}-N_{G_{0}}[u]\right)>0$.
The proof is completed.
Remark. Repeating transformation B, any ($n, n+1$)-graph can be changed into an $(n, n+1)$-graph such that all the pendant edges are attached to the same vertex.

3. The graph with the largest Merrifield-Simmons index in $\mathcal{A}(p, q)$

In this section, we will find the $(n, n+1)$-graph with the largest MerrifieldSimmons index in $\mathcal{A}(p, q)$.

Figure 4. The graph $S_{n}(p, q)$.

Let $S_{n}(p, q)$ be a graph in $\mathcal{A}(p, q)$ such that $n+1-(p+q)$ pendent edges are attached to the common vertex of C_{p} and C_{q} (see figure 4).

Theorem 3.1. If $G \in \mathcal{A}(p, q)$, then $i(G) \leqslant i\left(S_{n}(p, q)\right.$ with the equality if and only if $G \cong S_{n}(p, q)$.

Proof. First, repeating the transformations A and B on graph G, we can get a graph G^{\prime} such that all the edges not on the cycles are the pendant edges attached to the same vertex v. By lemmas 2.1 and 2.2 , we have $i(G) \leqslant i\left(G^{\prime}\right)$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G. If $G^{\prime} \not \equiv S_{n}(p, q)$, then $v \neq u$, where u is the common vertex of C_{p} and C_{q}.

Without loss of the generality, we assume that v is on the cycle C_{p} and the distance $d(u, v)=k-1$.
(i) If u and v are not adjacent (i.e., $k>1$), then

$$
\begin{aligned}
& i\left(S_{n}(p, q)\right)-i\left(G^{\prime}\right) \\
&= i\left(S_{n}(p, q)-\{v, u\}\right)+i\left(S_{n}(p, q)-\{v\} \cup N_{S_{n}(p, q)}[u]\right)+i\left(S_{n}(p, q)\right. \\
&\left.-\{u\} \cup N_{S_{n}(p, q)}[v]\right)+i\left(S_{n}(p, q)-N_{S_{n}(p, q)}[v] \cup N_{S_{n}(p, q)}[u]\right) \\
&-i\left(G^{\prime}-\{v, u\}\right)-i\left(G^{\prime}-\{v\} \cup N_{G^{\prime}}[u]\right)-i\left(G^{\prime}-\{u\} \cup N_{G^{\prime}}[v]\right) \\
&\left.-i\left(G^{\prime}-N_{G^{\prime}}[v] \cup N_{G^{\prime}}[u]\right)\right) \\
&= i\left(S_{n}(p, q)-\{v\} \cup N_{S_{n}(p, q)}[u]\right)+i\left(S_{n}(p, q)-\{u\} \cup N_{S_{n}(p, q)}[v]\right) \\
&-i\left(G^{\prime}-\{v\} \cup N_{G^{\prime}}[u]\right)-i\left(G^{\prime}-\{u\} \cup N_{G^{\prime}}[v]\right) \\
&= i\left(P_{k-3} \cup P_{p-k-1} \cup P_{q-3}\right)+2^{n+1-p-q} i\left(P_{k-3} \cup P_{p-k-1} \cup P_{q-1}\right) \\
&-2^{n+1-p-q} i\left(P_{k-3} \cup P_{p-k-1} \cup P_{q-3}\right)-i\left(P_{k-3} \cup P_{p-k-1} \cup P_{q-1}\right) \\
&=\left(2^{n+1-p-q}-1\right)\left(i\left(P_{k-3} \cup P_{p-k-1} \cup P_{q-1}\right)\right. \\
&\left.-i\left(P_{k-3} \cup P_{p-k-1} \cup P_{q-3}\right)\right) \geqslant 0
\end{aligned}
$$

with the equality if and only if $n=p+q-1$, and $G^{\prime} \cong S_{n}(p, q)$.
(ii) If u and v are adjacent (i.e., $k=1$), then

$$
\begin{aligned}
& i\left(S_{n}(p, q)\right)-i\left(G^{\prime}\right) \\
&= i\left(S_{n}(p, q)-\{v, u\}\right)+i\left(S_{n}(p, q)-N_{S_{n}(p, q)}[u]\right)+i\left(S_{n}(p, q)\right. \\
&\left.\left.-N_{S_{n}(p, q)}\right)[v]\right)-i\left(G^{\prime}-\{v, u\}\right)-i\left(G^{\prime}-N_{G^{\prime}}[u]\right)-i\left(G^{\prime}-N_{G^{\prime}}[v]\right) \\
&= i\left(S_{n}(p, q)-N_{S_{n}(p, q)}[u]\right)+i\left(S_{n}(p, q)-N_{S_{n}(p, q)}[v]\right) \\
&-i\left(G^{\prime}-N_{G^{\prime}}[u]\right)-i\left(G^{\prime}-N_{G^{\prime}}[v]\right) \\
&= i\left(P_{p-3} \cup P_{q-3}\right)+2^{n+1-p-q_{i}} i\left(P_{p-3} \cup P_{q-1}\right) \\
&-2^{n+1-p-q} i\left(P_{p-3} \cup P_{q-3}\right)-i\left(P_{p-3} \cup P_{q-1}\right) \\
&=\left(2^{n+1-p-q}-1\right)\left(i\left(P_{p-3} \cup P_{q-1}\right)-i\left(P_{p-3} \cup P_{q-3}\right)\right) \\
& \geqslant 0
\end{aligned}
$$

with the equality if and only if $n=p+q-1$, and $G^{\prime} \cong S_{n}(p, q)$.
Given $p \geqslant 3$ and $q \geqslant 3$, from the theorem above, we know $S_{n}(p, q)$ is the unique graph with the largest Merrifield-Simmons index in $\mathcal{A}(p, q)$.

Lemma 3.2. $i\left(S_{n}(p, q)\right)=2^{n+1-(p+q)} f(p+1) f(q+1)+f(p-1) f(q-1)$.
Proof. Let u be the common vertex of C_{p} and C_{q} in $S_{n}(p, q)$. Then we have

$$
\begin{aligned}
i\left(S_{n}(p, q)\right) & =i\left(S_{n}(p, q)-\{u\}\right)+i\left(S_{n}(p, q)-N_{S_{n}(p, q)}[u]\right) \\
& =2^{n+1-(p+q)} i\left(P_{p-1} \cup P_{q-1}\right)+i\left(P_{p-3} \cup P_{q-3}\right) \\
& =2^{n+1-(p+q)} f(p+1) f(q+1)+f(p-1) f(q-1) .
\end{aligned}
$$

Lemma 3.3.

(i) If $p>3$, then $i\left(S_{n}(p, q)\right)<i\left(S_{n}(p-1, q)\right)$;
(ii) If $q>3$, then $i\left(S_{n}(p, q)\right)<i\left(S_{n}(p, q-1)\right)$.

Proof. From the symmetry of p and q, we only need to prove (i).
If $p>3$, then by lemma 3.2 we have

$$
\begin{aligned}
\Delta= & i\left(S_{n}(p-1, q)\right)-i\left(S_{n}(p, q)\right) \\
= & 2^{n+2-(p+q)} f(p) f(q+1)+f(p-2) f(q-1) \\
& -2^{n+1-(p+q)} f(p+1) f(q+1)-f(p-1) f(q-1) \\
= & 2 \times 2^{n+1-(p+q)} f(p) f(q+1)+f(p-2) f(q-1) \\
& -2^{n+1-(p+q)}(f(p)+f(p-1)) f(q+1)-(f(p-2)+f(p-3)) f(q-1) \\
= & 2^{n+1-(p+q)}(f(p)-f(p-1)) f(q+1)-f(p-3) f(q-1) \\
= & 2^{n+1-(p+q)} f(p-2) f(q+1)-f(p-3) f(q-1) \\
= & 2^{n+1-(p+q)}(f(p-3)+f(p-4)) f(q+1)-f(p-3) f(q-1) \\
= & 2^{n+1-(p+q)} f(p-4) f(q+1)+f(p-3)\left(2^{n+1-(p+q)} f(q+1)-f(q-1)\right) \\
> & 0
\end{aligned}
$$

From theorem 3.1 and lemma 3.3, we know

(c)

(e)

(d)

(f)

Figure 5. (a) $T_{n}^{r}(p, q)$, (b) $T_{n}^{r}(q, p)$, and (c) $T_{n}(p, q)$.

Theorem 3.4. For all $p \geqslant 3$ and $q \geqslant 3, S_{n}(3,3)$ is the unique graph with the largest Merrifield-Simmons index among $\mathcal{A}(p, q)$.

4. The graph with the largest Merrifield-Simmons index in $\mathcal{B}(p, q)$

In this section, we will find the $(n, n+1)$-graph with the largest MerrifieldSimmons index in $\mathcal{B}(p, q)$.

Let $T_{n}^{r}(p, q)$ be the $(n, n+1)$-graph obtaining from connecting C_{p} and C_{q} by a path of length r and the other $n+1-p-q-r$ edges are all attached to the common vertex of the path and C_{p} (see figure 5(a)). And $T_{n}^{r}(q, p)$ is showed in figure 5(b).

Theorem 4.1. If $G \in \mathcal{B}(p, q)$, the length of the shortest path connecting C_{p} and C_{q} is r, then either as follows:
(i) $i(G) \leqslant i\left(T_{n}^{r}(p, q)\right)$ with the equality if and only if $G \cong T_{n}^{r}(p, q)$; or
(ii) $i(G) \leqslant i\left(T_{n}^{r}(q, p)\right)$ with the equality if and only if $G \cong T_{n}^{r}(q, p)$; or
(iii) $i(G) \leqslant i\left(T_{n}(p, q)\right)$ with the equality if and only if $G \cong T_{n}(p, q)$, where $T_{n}(p, q)$ is the $(n, n+1)$-graph obtaining from connecting C_{p} and C_{q} by a path uvw of length 3 and the other $n-p-q-1$ edges are all attached to the vertex w of the path, as showed in figure 5(c).

Proof. Let $W=v_{1} v_{2}, \ldots, v_{r} v_{r+1}$ be the shortest path connecting C_{p} and C_{q}, and v_{1} the common vertex W and C_{p}, v_{r+1} the common vertex W and C_{q}.

Repeating the transformations A and B on graph G, we can get a graph G^{\prime} in figure 5 such that all the edges not on the cycles are the pendant edges
attached to the same vertex v. By lemmas 2.1 and 2.2 , we have $i(G) \leqslant i\left(G^{\prime}\right)$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G.
Case I. v is on the cycle C_{p} (as showed in figure $5(\mathrm{~d})$) and the distance $d\left(v_{1}, v\right)=k-1$.
(i) If v_{1} and v are not adjacent (i.e., $k>1$), then

$$
\begin{aligned}
& i\left(T_{n}^{r}(p, q)\right)-i\left(G^{\prime}\right) \\
& =i\left(T_{n}^{r}(p, q)-\left\{v, v_{1}\right\}\right)+i\left(T_{n}^{r}(p, q)-\{v\} \cup N_{T_{n}^{r}(p, q)}\left[v_{1}\right]\right)+i\left(T_{n}^{r}(p, q)\right. \\
& \left.-\left\{v_{1}\right\} \cup N_{T_{n}^{r}(p, q)}[v]\right)+i\left(T_{n}^{r}(p, q)-N_{T_{n}^{r}(p, q)}[v] \cup N_{T_{n}^{r}(p, q)}\left[v_{1}\right]\right) \\
& -i\left(G^{\prime}-\left\{v, v_{1}\right\}\right)-i\left(G^{\prime}-\{v\} \cup N_{G^{\prime}}\left[v_{1}\right]\right)-i\left(G^{\prime}-\left\{v_{1}\right\} \cup N_{G^{\prime}}[v]\right) \\
& -i\left(G^{\prime}-N_{G^{\prime}}[v] \cup N_{G^{\prime}}\left[v_{1}\right]\right) \\
& =i\left(T_{n}^{r}(p, q)-\{v\} \cup N_{T_{n}^{r}}(p, q)\left[v_{1}\right]\right)+i\left(T_{n}^{r}(p, q)-\left\{v_{1}\right\} \cup N_{T_{n}^{r}(p, q)}[v]\right) \\
& -i\left(G^{\prime}-\{v\} \cup N_{G^{\prime}}\left[v_{1}\right]\right)-i\left(G^{\prime}-\left\{v_{1}\right\} \cup N_{G^{\prime}}[v]\right) \\
& =i\left(P_{k-3} \cup P_{p-k-1} \cup H_{1}\right)+2^{n+1-(p+q+r)} i\left(P_{k-3} \cup P_{p-k-1} \cup H_{2}\right) \\
& -2^{n+1-(p+q+r)} i\left(P_{k-3} \cup P_{p-k-1} \cup H_{1}\right)-i\left(P_{k-3} \cup P_{p-k-1} \cup H_{2}\right) \\
& =\left(2^{n+1-(p+q+r)}-1\right) \cdot\left(i\left(H_{2}\right)-i\left(H_{1}\right)\right) \cdot i\left(P_{k-3} \cup P_{p-k-1}\right) \\
& \geqslant 0
\end{aligned}
$$

with the equality if and only if $n=p+q+r-1$, and then also $G^{\prime} \cong T_{n}^{r}(p, q)$; where H_{2} is the graph deleting v_{1} from the subgraph of $T_{n}^{r}(p, q)$ consisting of C_{q} and W and $H_{1}=H_{2}-\left\{v_{2}\right\}$, and $i\left(H_{2}\right)<$ $i\left(H_{1}\right)$ since any independent set in H_{1} is also an independent set in H_{2}.
(ii) If v_{1} and v are adjacent (i.e., $k=1$), then

$$
\begin{aligned}
& i\left(T_{n}^{r}(p, q)\right)-i\left(G^{\prime}\right) \\
& \quad=i\left(T_{n}^{r}(p, q)-\left\{v, v_{1}\right\}\right)+i\left(T_{n}^{r}(p, q)-N_{T_{n}^{r}}(p, q)\left[v_{1}\right]\right)+i\left(T_{n}^{r}(p, q)\right. \\
& \left.\quad-N_{T^{r}(p, q)}[v]\right)-i\left(G^{\prime}-\left\{v, v_{1}\right\}\right)-i\left(G^{\prime}-N_{G^{\prime}}\left[v_{1}\right]\right)-i\left(G^{\prime}-N_{G^{\prime}}[v]\right) \\
& =i\left(T_{n}^{r}(p, q)-N_{T_{n}^{r}(p, q)}\left[v_{1}\right]\right)+i\left(T_{n}^{r}(p, q)-N_{T_{n}^{r}(p, q)}[v]\right) \\
& \quad-i\left(G^{\prime}-N_{G^{\prime}}\left[v_{1}\right]\right)-i\left(G^{\prime}-N_{G^{\prime}}(v]\right) \\
& =i\left(P_{p-3} \cup H_{1}\right)+2^{n+1-(p+q+r) i\left(P_{p-3} \cup H_{2}\right)} \\
& \quad-2^{n+1-(p+q+r) i\left(P_{p-3} \cup H_{1}\right)-i\left(P_{p-3} \cup H_{2}\right)} \\
& =\left(2^{n+1-(p+q+r)-1) \cdot\left(i\left(H_{2}\right)-i\left(H_{1}\right)\right) \cdot i\left(P_{p-3}\right)} \begin{array}{l}
\geqslant
\end{array}\right)
\end{aligned}
$$

with the equality if and only if $n=p+q+r-1$, and then also $G^{\prime} \cong$ $T_{n}^{r}(p, q)$.
Case II. v is on the cycle C_{q} (as showed in figure 5(e)).
We can prove that $i\left(T_{n}^{r}(q, p)\right) \geqslant i(G)$ with the equality if and only if $G \cong$ $T_{n}^{r}(q, p)$ as in the case I.

Case III. v is on the path W (as showed in figure 5(f)). Let $v=v_{t}, 1<t \leqslant r$.

$$
\begin{aligned}
& i\left(T_{n}(p, q)\right)-i\left(G^{\prime}\right) \\
&= i\left(T_{n}(p, q)-\{u, w\}\right)+i\left(T_{n}(p, q)-\{w\} \cup N_{T_{n}(p, q)}[u]\right) \\
& \quad+i\left(T_{n}(p, q)-\{u\} \cup N_{T_{n}(p, q)}[w]\right)+i\left(T_{n}(p, q)-N_{T_{n}(p, q)}[w] \cup N_{T_{n}(p, q)}[u]\right) \\
& \quad-i\left(G^{\prime}-\left\{v_{1}, v_{r+1}\right\}\right)-i\left(G^{\prime}-\left\{v_{r+1}\right\} \cup N_{G^{\prime}}\left[v_{1}\right]\right) \\
& \quad-i\left(G^{\prime}-\left\{v_{1}\right\} \cup N_{G^{\prime}}\left[v_{r+1}\right]\right)-i\left(G^{\prime}-N_{G^{\prime}}\left[v_{r+1}\right] \cup N_{G^{\prime}}\left[v_{1}\right]\right) \\
&= i\left(P_{p-1} \cup P_{q-1} \cup S_{n-p-q}\right)+i\left(P_{p-3} \cup P_{q-1} \cup \overline{K_{n-1-p-q}}\right) \\
& \quad+i\left(P_{p-1} \cup P_{q-3} \cup \overline{K_{n-1-p-q}}\right)+i\left(P_{p-3} \cup P_{q-3} \cup \overline{K_{n-1-p-q}}\right) \\
& \quad-i\left(P_{p-1} \cup P_{q-1} \cup R_{1}\right)-i\left(P_{p-3} \cup P_{q-1} \cup R_{2}\right) \\
& \quad-i\left(P_{p-1} \cup P_{q-3} \cup R_{3}\right)-i\left(P_{p-3} \cup P_{q-3} \cup R_{4}\right),
\end{aligned}
$$

where $R_{1}=G^{\prime}-C_{p} \cup C_{q}, R_{2}=R_{1}-\left\{v_{2}\right\}, R_{3}=R_{1}-\left\{v_{r}\right\}$ and $R_{4}=R_{1}-\left\{v_{2}, v_{r}\right\}$.
Since $i\left(R_{1}\right) \leqslant i\left(S_{n-p-q}\right), i\left(R_{2}\right) \leqslant i\left(\overline{K_{n-1-p-q}}\right), i\left(R_{3}\right) \leqslant i\left(\overline{K_{n-1-p-q}}\right)$ and $i\left(R_{4}\right) \leqslant i\left(\overline{K_{n-1-p-q}}\right)$, with the equality if and only if $v_{2}=v_{t}=v_{r}$, i.e., $G^{\prime} \cong$ $T_{n}(p, q), i\left(T_{n}(p, q)\right) \geqslant i\left(G^{\prime}\right)$.

Lemma 4.2.

(i) If $p \geqslant 5$, then $i\left(T_{n}(p, q)\right)<i\left(T_{n}(p-2, q)\right)$;
(ii) If $q \geqslant 5$, then $i\left(T_{n}(p, q)\right)<i\left(T_{n}(p, q-2)\right)$.

Proof. From the symmetry of p and q, we only need to prove (i). Let u, v be the vertices of degree 3 on the cycles. (u and v are not adjacent.)

$$
\begin{aligned}
& i\left(T_{n}(p-2, q)\right)-i\left(T_{n}(p, q)\right) \\
& =i\left(T_{n}(p-2, q)-\{u, v\}\right)+i\left(T_{n}(p-2, q)-\{v\} \cup N_{T_{n}(p-2, q)}[u]\right) \\
& \quad+i\left(T_{n}(p-2, q)-\{u\} \cup N_{T_{n}(p-2, q)}[v]\right)+i\left(T_{n}(p-2, q)\right. \\
& \left.\quad-N_{T_{n}(p-2, q)}[v] \cup N_{T_{n}(p-2, q)}[u]\right)-i\left(T_{n}(p, q)-\{u, v\}\right)-i\left(T_{n}(p, q)\right. \\
& \left.\quad-\{v\} \cup N_{T_{n}(p, q)}[u]\right)-i\left(T_{n}(p, q)-\{u\} \cup N_{T_{n}(p, q)}[v]\right)-i\left(T_{n}(p, q)\right. \\
& \left.\quad-N_{T_{n}(p, q)}[v] \cup N_{T_{n}(p, q)}[u]\right) \\
& =i\left(P_{p-3} \cup P_{q-1} \cup S_{n+2-p-q}\right)+i\left(P_{p-5} \cup P_{q-1} \cup \overline{K_{n+1-p-q}}\right) \\
& \quad+i\left(P_{p-3} \cup P_{q-3} \cup \overline{K_{n+1-p-q}}\right)+i\left(P_{p-5} \cup P_{q-3} \cup \overline{K_{n+1-p-q}}\right) \\
& \quad-i\left(P_{p-1} \cup P_{q-1} \cup S_{n-p-q}\right)-i\left(P_{p-3} \cup P_{q-1} \cup \overline{K_{n-1-p-q}}\right) \\
& \quad-i\left(P_{p-1} \cup P_{q-3} \cup \overline{K_{n-1-p-q}}\right)-i\left(P_{p-3} \cup P_{q-3} \cup \overline{K_{n-1-p-q}}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
i(& \left.P_{p-3} \cup S_{n+2-p-q}\right)+i\left(P_{p-5} \cup \overline{K_{n+1-p-q}}\right)-i\left(P_{p-1} \cup S_{n-p-q}\right) \\
\quad & -i\left(P_{p-3} \cup \overline{K_{n-1-p-q}}\right) \\
= & \left(1+2^{n+1-p-q}\right) f(p-1)+2^{n+1-p-q} f(p-3)-\left(1+2^{n-1-p-q}\right) f(p+1) \\
& -2^{n-1-p-q} f(p-1) \\
= & \left(1+4 \times 2^{n-1-p-q}\right) f(p-1)+4 \times 2^{n-1-p-q}(f(p-1)-f(p-2)) \\
& -\left(1+2^{n-1-p-q}\right)(2 f(p-1)+f(p-2))-2^{n-1-p-q} f(p-1) \\
= & 5 \times 2^{n-1-p-q}(f(p-1)-f(p-2))-(f(p-1)+f(p-2)) \\
= & 5 \times 2^{n-1-p-q} f(p-3)-3 f(p-3)-2 f(p-4) \\
> & 0
\end{aligned}
$$

and

$$
\begin{aligned}
i(& \left.P_{p-3} \cup \overline{K_{n+1}-p-q}\right)+i\left(P_{p-5} \cup \overline{K_{n+1-p-q}}\right)-i\left(P_{p-1} \cup \overline{K_{n-1-p-q}}\right) \\
\quad & -i\left(P_{p-3} \cup \frac{P_{n}}{K_{n-1-p-q}}\right) \\
= & 2^{n+1-p-q} f(p-1)+2^{n+1-p-q} f(p-3)-2^{n-1-p-q} f(p+1) \\
& -2^{n-1-p-q} f(p-1) \\
= & 2^{n-1-p-q}(4 \times f(p-1)+4 \times(f(p-1)-f(p-2))-(2 f(p-1) \\
& \quad+f(p-2))-f(p-1)) \\
= & 5 \times 2^{n-1-p-q}(f(p-1)-f(p-2)) \\
\quad> & 0
\end{aligned}
$$

we have $i\left(T_{n}(p-2, q)\right)>i\left(T_{n}(p, q)\right)$.
From lemma 4.2, it is immediately that

Corollary 4.3.

(i) If p and q are odd, then $i\left(T_{n}(p, q)\right) \leqslant i\left(T_{n}(3,3)\right)$.
(ii) If p and q are even, then $i\left(T_{n}(p, q)\right) \leqslant i\left(T_{n}(4,4)\right)$.
(iii) If the parity of p and q is different, then $i\left(T_{n}(p, q)\right) \leqslant i\left(T_{n}(3,4)\right)$ with the equality if and only if $T_{n}(p, q)$ is one of $T_{n}(3,3), T_{n}(3,4)$ and $T_{n}(4,4)$.

Lemma 4.4. If $r>1$, then

$$
\begin{aligned}
i\left(T_{n}^{r}(p, q)=\right. & 2^{n+1-(p+q+r)} f(p+1) f(q+1) f(r+1)+f(p-1) f(q+1) f(r) \\
& +2^{n+1-(p+q+r)} f(p+1) f(q-1) f(r)+f(p-1) f(q-1) f(r-1)
\end{aligned}
$$

If $r=1$, then $i\left(T_{n}^{1}(p, q)\right)=2^{n-(p+q)} f(p+1)(f(q+1)+f(q-1))+$ $f(p-1) f(q+1)$.

Proof. Let u and v be the vertices with degree more than two on the cycles C_{p} and C_{q}, respectively; and $G=T_{n}^{r}(p, q)$.

If $r \geqslant 2, u$ and v are not adjacent. Then

$$
\begin{aligned}
i\left(T_{n}^{r}(p, q)\right)= & i(G-\{u, v\}))+i\left(G-\{v\} \cup N_{G}[u]\right) \\
& +i\left(G-\{u\} \cup N_{G}[v]\right)+i\left(G-N_{G}[u] \cup N_{G}[v]\right) \\
= & 2^{n+1-(p+q+r)} i\left(P_{p-1} \cup P_{q-1} \cup P_{r-1}\right)+i\left(P_{p-3} \cup P_{q-1} \cup P_{r-2}\right) \\
& +2^{n+1-(p+q+r)} i\left(P_{p-1} \cup P_{q-3} \cup P_{r-2}\right)+i\left(P_{p-3} \cup P_{q-3} \cup P_{r-3}\right) \\
= & 2^{n+1-(p+q+r)} f(p+1) f(q+1) f(r+1)+f(p-1) f(q+1) f(r) \\
& +2^{n+1-(p+q+r)} f(p+1) f(q-1) f(r)+f(p-1) f(q-1) f(r-1)
\end{aligned}
$$

If $r=1$, then

$$
\begin{aligned}
i\left(T_{n}^{1}(p, q)\right) & =i(G-\{u\})+i\left(G-N_{G}[u]\right) \\
& =2^{n-(p+q)} i\left(P_{p-1} \cup C_{q}\right)+i\left(P_{p-3} \cup P_{q-1}\right) \\
& =2^{n-(p+q)} f(p+1)(f(q+1)+f(q-1))+f(p-1) f(q+1)
\end{aligned}
$$

Lemma 4.5. If $r>1$, then

$$
i\left(T_{n}^{r}(p, q)\right)<i\left(T_{n}^{r-1}(p, q)\right)
$$

Proof. If $r>2$, then

$$
\begin{aligned}
& i\left(T_{n}^{r-1}(p, q)\right)-i\left(T_{n}^{r}(p, q)\right) \\
& \quad=2 \times 2^{n+1-(p+q+r)} f(p+1) f(q+1) f(r)+f(p-1) f(q+1) f(r-1) \\
& \quad+2 \times 2^{n+1-(p+q+r)} f(p+1) f(q-1) f(r-1)+f(p-1) f(q-1) f(r-2) \\
& \quad-2^{n+1-(p+q+r)} f(p+1) f(q+1) f(r+1)-f(p-1) f(q+1) f(r) \\
& \quad-2^{n+1-(p+q+r)} f(p+1) f(q-1) f(r)-f(p-1) f(q-1) f(r-1) \\
& = \\
& 2^{n+1-(p+q+r)} f(p+1) f(q+1)(f(r)-f(r-1)) \\
& \quad+f(p-1) f(q+1)(f(r-1)-f(r)) \\
& \quad+2^{n+1-(p+q+r)} f(p+1) f(q-1)(f(r-1)-f(r-2)) \\
& \quad+f(p-1) f(q-1)(f(r-2)-f(r-1)) \\
& >
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } r=2 \text {, then } \\
& i\left(T_{n}^{1}(p, q)\right)-i\left(T_{n}^{2}(p, q)\right) \\
& =2^{n-(p+q)} f(p+1)(f(q+1)+f(q-1))+f(p-1) f(q+1) \\
& -2^{n+1-(p+q+2)} f(p+1) f(q+1) f(3)-f(p-1) f(q+1) f(2) \\
& -2^{n+1-(p+q+2)} f(p+1) f(q-1) f(2)-f(p-1) f(q-1) f(1) \\
& =2^{n+1-(p+q+2)} f(p+1) f(q-1)-f(p-1) f(q-1) \\
& >0 \text {. }
\end{aligned}
$$

For the graph $T_{n}^{r}(q, p)$, the similar results hold. From lemma 4.5, it is immediately that

Corollary 4.6. If $r>1$, then $i\left(T_{n}^{r}(p, q)\right)<i\left(T_{n}^{1}(p, q)\right)$ and $i\left(T_{n}^{r}(q, p)\right)<$ $i\left(T_{n}^{1}(q, p)\right)$.

Lemma 4.7.

(i) If $p>3$, then $i\left(T_{n}^{1}(p, q)\right)<i\left(T_{n}^{1}(p-1, q)\right)$;
(ii) If $q>3$, then $i\left(T_{n}^{1}(p, q)\right)<i\left(T_{n}^{1}(p, q-1)\right)$;
(iii) If $p>3$, then $i\left(T_{n}^{1}(q, p)\right)<i\left(T_{n}^{1}(q, p-1)\right)$;
(iv) If $q>3$, then $i\left(T_{n}^{1}(q, p)\right)<i\left(T_{n}^{1}(q-1, p)\right)$;
(v) If $r>1$ or $p>3$ or $q>3$, then $i\left(T_{n}^{r}(p, q)\right)<i\left(T_{n}^{1}(3,3)\right)$.

Proof.

(i)

$$
\begin{aligned}
& i\left(T_{n}^{1}(p-1, q)\right)-i\left(T_{n}^{1}(p, q)\right) \\
&= 2^{n+1-(p+q)} f(p)(f(q+1)+f(q-1))+f(p-2) f(q+1) \\
&-2^{n-(p+q)} f(p+1)(f(q+1)+f(q-1))-f(p-1) f(q+1) \\
&= 2^{n-(p+q)}(f(q+1)+f(q-1))(f(p)-f(p-1)) \\
&-f(q+1)(f(p-1)-f(p-2)) \\
&= 2^{n-(p+q)}(f(q+1)+f(q-1)) f(p-2)-f(q+1) f(p-3) \\
&> 0,
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& i\left(T_{n}^{1}(p, q-1)\right)-i\left(T_{n}^{1}(p, q)\right) \\
&= 2^{n+1-(p+q)} f(p+1)(f(q)+f(q-2))+f(p-1) f(q) \\
&-2^{n-(p+q)} f(p+1)(f(q+1)+f(q-1))-f(p-1) f(q+1) \\
&= 2^{n+1-(p+q)} f(p+1)(f(q)+f(q-2))+f(p-1) f(q) \\
&-2^{n-(p+q)} f(p+1)(f(q)+f(q-1)+f(q-2) \\
&+f(q-3))-f(p-1) f(q+1) \\
&= 2^{n-(p+q)} f(p+1)(f(q)+f(q-2)-f(q-1)-f(q-3)) \\
&-f(p-1)(f(q+1)-f(q)) \\
&= 2^{n-(p+q)} f(p+1)(f(q-2)+f(q-4))-f(p-1)(f(q-2) \\
&+f(q-4)+f(q-5)) \\
&> 2^{n-(p+q)} f(p+1) f(q-4)-2 f(p-1) f(q-4) \\
&> 0
\end{aligned}
$$

(iii) and (iv) can be proved similarly. (v) is immediate from (i)-(iv).

Now, we compare the Merrifield-Simmons indices of $T_{n}^{1}(3,3), T_{n}(3,3), T_{n}(3,4)$, and $T_{n}(4,4)$. It can be computed out easily that

$$
\begin{aligned}
& i\left(T_{n}^{1}(3,3)\right)=3 \times 2^{n-4}+3=96 \times 2^{n-9}+3 \\
& i\left(T_{n}(3,3)\right)=2^{n-3}+9=64 \times 2^{n-9}+9 \\
& i\left(T_{n}(3,4)\right)=7 \times 2^{n-6}+15=56 \times 2^{n-9}+15
\end{aligned}
$$

Figure 6.
$i\left(T_{n}(4,4)\right)=49 \times 2^{n-9}+25$.
Then $i\left(T_{7}^{1}(3,3)\right)>i\left(T_{7}(3,3)\right), i\left(T_{8}^{1}(3,3)\right)>i\left(T_{8}(3,4)\right)>i\left(T_{8}(3,3)\right)$, and $i\left(T_{n}^{1}(3,3)\right)>i\left(T_{n}(3,3)\right)>i\left(T_{n}(3,4)\right)>i\left(T_{n}(4,4)\right)$ for $n>8$. So, we have

Theorem 4.8. The $T_{n}^{1}(3,3)$ is the unique graph with the largest Merrifield-Simmons index among all graphs in $\mathcal{B}(p, q)$ for all $p \geqslant 3$ and $q \geqslant 3$.

5. The graph with the largest Merrifield-Simmons index in $\mathcal{C}(p, q, l)$

In this section, we will find the $(n, n+1)$-graph with the largest MerrifieldSimmons index in $\mathcal{C}(p, q, l)$.

Let $\theta_{n}^{l}(p, q)$ be the graph obtaining from the graph in figure 1 (c) by attaching $n+1+l-(p+q)$ to one of its vertices with degree 3 (see figure 6(a)).

Theorem 5.1. Let $G \in \mathcal{C}(p, q, l)$. Then $i(G) \leqslant i\left(G_{0}\right)$ with the equality if and only if $G \cong G_{0}$, where G_{0} is one of graphs in figure 6(c), (d), and (e).

Proof. Let $W_{1}=u x_{1} x_{2} \ldots x_{l-1} v$ be the common path of C_{p} and C_{q} of the graph G in Figure 6(a), $W_{2}=u y_{1} y_{2} \ldots y_{r} v$ and $W_{3}=u z_{1} z_{2} \ldots z_{t} v$ the other paths from u to v on C_{p} and C_{q}, respectively; $r=p-l-1, t=q-l-1$.

Table 1
The mapping $\rho: I\left(G^{\prime}\right) \rightarrow I\left(G^{\prime \prime}\right)$.

x_{i}	x_{i-1}	x_{i-2}	$\rho(B)$
0	0	0	B
0	0	1	B
0	1	0	B
1	0	0	B
1	0	1	$\left(B-\left\{x_{i}\right\}\right) \cup\left\{x_{i-1}\right\}$

Repeating the transformations A and B on graph G, we can get a graph $G^{\prime} \in \mathcal{C}(p, q, l)$ such that all the edges not on the cycles are the pendant edges attached to the same vertex v_{0}. By lemmas 2.1 and 2.2 , we have $i(G) \leqslant i\left(G^{\prime}\right)$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G.

Case I. If $v_{0} \neq u, v$, without loss of the generality, we may assume that $v_{0}=x_{i}$. We show that $i\left(G^{\prime}\right) \leqslant i\left(G_{1}\right)$ in the following, where G_{1} is one of graphs showed in figure 6(c) and (d).

If $l>2$, we may assume $i>1$.
Let $G^{\prime \prime}=\left(G^{\prime}-\left\{x_{i-1} x_{i-2}\right\}\right)+\left\{x_{i} x_{i-2}\right\}$. We can show that $i\left(G^{\prime}\right)<i\left(G^{\prime \prime}\right)$ by constructing an injective, non-surjective mapping ρ from $I\left(G^{\prime}\right)$ to $I\left(G^{\prime \prime}\right)$ as in table 1. The mapping ρ is injective. However, there is no $B \in I\left(G^{\prime}\right)$ with $\rho(B)=$ $\left\{x_{i-1}, x_{i-2}\right\}$.

We continue this until $l=2$.
If $l=2$, then $v_{0}=x_{1}$ and v_{0} is adjacent to u and v in G^{\prime}. We show that $i\left(G^{\prime}\right) \leqslant i\left(G_{1}\right)$ in the following:
(i) If $t>1$, let $\left.G^{\prime \prime}=\left(G^{\prime}-\left\{v z_{t}, z_{t} z_{t-1}\right\}\right)+\left\{v z_{t-1}, v_{0} z_{t}\right\}\right)$. Then

$$
\begin{aligned}
& i\left(G^{\prime \prime}\right)-i\left(G^{\prime}\right) \\
&= i\left(G^{\prime \prime}-\left\{v_{0}\right\}\right)+i\left(G^{\prime \prime}-N_{G^{\prime \prime}}\left[v_{0}\right]\right) \\
&-i\left(G^{\prime}-\left\{v_{0}\right\}\right)-i\left(G^{\prime}-N_{G^{\prime}}\left[v_{0}\right]\right) \\
&= 2^{n+4-p-q} i\left(C_{r+t+1}\right)+i\left(P_{r} \cup P_{t-1}\right)-2^{n+3-p-q} i\left(C_{r+t+2}\right)-i\left(P_{r} \cup P_{t}\right) \\
&= 2^{n+4-p-q}(f(r+t)+f(r+t+2))+f(r+2) f(t+1) \\
&-2^{n+3-p-q}(f(r+t+1)+f(r+t+3))-f(r+2) f(t+2) \\
&= 2^{n+3-p-q}(f(r+t)+f(r+t+2)-f(r+t-1))-f(r+2) f(t) \\
&= 2^{n+3-p-q}(f(r+t-2)+f(r+t+2))-f(r+2) f(t) \\
&> 0
\end{aligned}
$$

since $f(r+t-2)+f(r+t+2)>f(r+t-1)+f(r+t+1)=i\left(C_{r+t}\right)$ and $f(r+2) f(t)=i\left(P_{r} \cup P_{t-2}\right)$, and there are two vertices v_{1}, v_{2} such that $C_{r+t}-\left\{v_{1}, v_{2}\right\}=P_{r} \cup P_{t-2}$, so $f(r+t)+f(r+t+2)>f(r+2) f(t)$. And $i\left(G^{\prime}\right)<i\left(G^{\prime \prime}\right)$.

Table 2
The mapping $\xi: I\left(G^{\prime}\right) \rightarrow I\left(G^{\prime \prime}\right)$.

u	y_{1}	y_{2}	ξ
0	0	0	B
0	0	1	B
0	1	0	B
1	0	0	B
1	0	1	$(B-\{u\}) \cup\left\{y_{1}\right\}$

(ii) Similarly, if $r>1$, let $\left.G^{\prime \prime}=\left(G^{\prime}-\left\{v y_{r}, y_{r} y_{r-1}\right\}\right)+\left\{v y_{r-1}, v_{0} y_{r}\right\}\right)$, then also $i\left(G^{\prime}\right)<i\left(G^{\prime \prime}\right)$.

Repeating (i) and (ii), we have $i\left(G^{\prime}\right)<i\left(G_{1}\right)$.
Case II. If $v_{0}=u$ or v, without loss of the generality, we may assume that $v_{0}=$ u. We show that $i\left(G^{\prime}\right) \leqslant i\left(G_{2}\right)$ in the following, where G_{2} is the graph showed in figure 6(e).

If $G^{\prime} \not \equiv G_{2}$, then $\{r, t, l-1\} \neq\{1,2,2\}$. Without loss of the generality, we may assume that $r \geqslant t \geqslant l-1$ and $r \geqslant 3$. Let $G^{\prime \prime}=\left(G^{\prime}-\left\{y_{1}, y_{2}\right\}\right)+\left\{u y_{2}\right\}$.

We construct a mapping ξ from $I\left(G^{\prime}\right)$ to $I\left(G^{\prime \prime}\right)$ as in table 2. The mapping ξ is injective. However, there is no $B \in I\left(G^{\prime}\right)$ with $\xi(B)=\left\{y_{1}, y_{2}\right\}$. So, $i\left(G^{\prime}\right)<$ $i\left(G^{\prime \prime}\right)$.

And continuing, we can get $i\left(G^{\prime}\right)<i\left(G_{2}\right)$.

6. Extremal graph in $\mathcal{G}(n, n+1)$

In this section, we give the upper bound for the Merrifield-Simmons index in $\mathcal{G}(n, n+1)$, and characterize the extremal graph.

Theorem 6.1. Let G be an $(n, n+1)$-graph, then $i(G) \leqslant 5 \times 2^{n-4}+1$ with the equality if and only if G is the graph in figure 6(e).

Proof. From theorems 3.4, 4.9, and 5.1, we only need to compare the Merri-field-Simmons indices of $S_{n}(3,3), T_{n}^{1}(3,3)$ and H_{1}, H_{2}, H_{3}, where H_{1}, H_{2}, and H_{3} are the graphs in figure 6(c),(d), and (e), respectively. Computing immediately, we have

$$
\begin{aligned}
& i\left(S_{n}(3,3)\right)=9 \times 2^{n-5}+1 \\
& i\left(T_{n}^{1}(3,3)\right)=12 \times 2^{n-6}+3=6 \times 2^{n-5}+3 \\
& i\left(H_{1}\right)=7 \times 2^{n-5}+4 \\
& i\left(H_{2}\right)=4 \times 2^{n-4}+2=8 \times 2^{n-5}+2 \\
& i\left(H_{3}\right)=5 \times 2^{n-4}+1=10 \times 2^{n-5}+1
\end{aligned}
$$

Therefore, $i(G) \leqslant i\left(H_{3}\right)=5 \times 2^{n-4}+1$ with the equality if and only if G is the graph in figure 6(e).

Acknowledgments

Project 10471037 supported by National Natural Science Foundation of China and A Project Supported by Scientific Research Fund of Hunan Provincial Education Department(04B047).

References

[1] R.E. Merrifield and H.E. Simmons, Theor. Chim. Acta 55 (1980) 55-75.
[2] R.E. Merrifield and H.E. Simmons, Topological Methods in Chemistry (Wiley, New York, 1989).
[3] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000).
[4] H. Prodinger and R.F. Tichy, Fibonacci Quart. 20 (1982) 16-21.
[5] I. Gutman, Coll. Sci. Pap. Fac. Sci. Kragujevac 11 (1990) 11-18.
[6] I. Gutman, Rev. Roum. Chim. 36 (1991) 379-388.
[7] X. Li, Aust. J. Comb. 14 (1996) 15-20.
[8] Y. Wang, X. Li and I. Gutman, Publ. Inst. Math. (Beograd) 69 (2001) 41-50.
[9] X. Li, Z. Li and L. Wang, J.Comput. Biol. 10 (2003) 47-55.
[10] L. Zhang and F. Tian, J. Math. Chem. 34 (2003) 111-122.
[11] X. Li, H. Zhao and I. Gutman, Math. Commun. Comput. Chem, 54(2) (2005) 389-402.
[12] A.S. Pedersen and P.D. Vestergaard, Discrete Appl. Math. 152 (2005) 246-256.
[13] S. Chen and H. Deng, Accepted by J. Math. Chem. (2006).

[^0]: *Corresponding author.

