DOI: 10.1007/s10910-006-9180-z

The Merrifield–Simmons index in (n, n + 1)-graphs

Hanyuan Deng*, Shubo Chen and Jie Zhang

College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China
E-mail: hydeng@hunnu.edu.cn

Received 9 June 2006; revised 27 June 2006

A (n, n+1)-graph G is a connected simple graph with n vertices and n+1 edges. In this paper, we determine the upper bound for the Merrifield–Simmons index in (n, n+1)-graphs in terms of the order n, and characterize the (n, n+1)-graph with the largest Merrifield–Simmons index.

KEY WORDS: (n, n + 1)-graph, Merrifield–Simmons index

1. Introduction

Let G = (V, E) be a simple connected graph with the vertex set V(G) and the edge set E(G). For any $v \in V$, $N_G(v) = \{u|uv \in E(G)\}$ denotes the neighbors of v, and $d_G(v) = |N_G(v)|$ is the degree of v in G; $N_G[v] = \{v\} \cup N_G(v)$. A leaf is a vertex of degree one and a stem is a vertex adjacent to at least one leaf. Let $E' \subseteq E(G)$, we denote by G - E' the subgraph of G obtained by deleting the edges of E'. $W \subseteq V(G)$, G - W denotes the subgraph of G obtained by deleting the vertices of G and the edges incident with them. If a graph G has components G_1, G_2, \ldots, G_t , then G is denoted by $\bigcup_{i=1}^t G_i$. P_n denotes the path on G vertices, G is the cycle on G vertices, and G is the star consisting of one center vertex adjacent to G is a simple connected by G is the star consisting of one center vertex adjacent to G is the star consisting of one

For a graph G = (V, E), a subset $S \subseteq V$ is called independent if no two vertices of S are adjacent in G. The set of independent sets in G is denoted by I(G). The empty set is an independent set. The number of independent sets in G, denoted by I(G), is called the Merrifield–Simmons index or σ -index in theoretical chemistry.

The Merrifield–Simmons index [1–3] is one of the topological indices whose mathematical properties were studied in some detail [4–12] whereas its applicability for QSPR and QSAR was examined to a much lesser extent; in [2] it was shown that i(G) is correlated with the boiling points.

^{*}Corresponding author.

For the Merrifield–Simmons index, bounds for several classes of graphs were given. For instance, it was observed in [4] that the star S_n and the path P_n have the largest and the smallest Fibonacci number among all trees with n vertices, respectively; $i(S_n) = 2^{n-1} + 1$ and $i(P_n) = f(n+2)$, where f(0) = 0, f(1) = 1 and f(n) = f(n-1) + f(n-2) for $n \ge 2$ denotes the sequence of Fibonacci numbers. This is perhaps why some authors [4] called i(G) the Fibonacci number of the graph. Pedersen and Vestergaard [12] gave upper and lower bounds in unicyclic graphs in terms of order and characterized the extremal graphs, [11] determined the tree with the largest Merrifield–Simmons index among all trees with n vertices and with diameter k. For further details on the Merrifield–Simmons index (see the book [2], the papers [4–12] and the references cited therein).

Let x and y be two vertices in G. The set of independent sets in which contain the vertex x is denoted by $I_x(G)$, while $I_{-x}(G)$ denotes the set of independent sets which do not contain x. Then

(i)
$$i(G) = |I_{-x}(G)| + |I_x(G)| = i(G - \{x\}) + i(G - N_G[x]).$$

- (ii) If x and y are not adjacent in G, then $i(G) = i(G \{x, y\}) + i(G \{x\} \cup N_G[y]) + i(G \{y\} \cup N_G[x]) + i(G \{y\} \cup N_G[y])$.
- (iii) If x and y are adjacent in G, then $i(G) = i(G \{x, y\}) + i(G N_G[y]) + i(G N_G[x]).$
- (iv) If G is a graph with components $G_1, G_2, G_3, \ldots, G_k$, then $i(G) = \prod_{i=1}^k i(G_i)$.
- (v) $i(P_n) = f(n+2)$ for any $n \in \mathbb{N}$; $i(C_n) = f(n-1) + f(n+1)$ for any $n \ge 3$.

In this paper, we investigate the Merrifield–Simmons index of (n, n + 1)–graphs, i.e., connected simple graphs with n vertices and n+1 edges. We characterize the (n, n+1)–graph among all (n, n+1)–graphs with the largest Merrifield–Simmons index.

Let $\mathcal{G}(n, n+1)$ be the set of simple connected graphs with n vertices and n+1 edges. For any graph $G \in \mathcal{G}(n, n+1)$, there are two cycles C_p and C_q in G. As in [13], we divide all the (n, n+1)-graphs with two cycles of lengths p and q into three classes.

- (1) A(p,q) is the set of $G \in \mathcal{G}(n,n+1)$ in which the cycles C_p and C_q have only one common vertex.
- (2) $\mathcal{B}(p,q)$ is the set of $G \in \mathcal{G}(n,n+1)$ in which the cycles C_p and C_q have no common vertex.

Figure 1. The induced subgraphs of vertices on the cycles of an (n,n+1)-graph

Figure 2. Transformation A.

(3) C(p,q,l) is the set of $G \in \mathcal{G}(n,n+1)$ in which the cycles C_p and C_q have a common path of length l.

Note that the induced subgraph of vertices on the cycles of $G \in \mathcal{A}(p,q)$ (or $\mathcal{B}(p,q)$, $\mathcal{C}(p,q,l)$) is showed in figure 1(a) (or (b),(c)), and $\mathcal{C}(p,q,l) = \mathcal{C}(p,p+q-2l,p-l) = \mathcal{C}(p+q-2l,q,q-l)$.

2. Two transformations

Before our main results, we give two transformations which will increase the Merrifield–Simmons index as follows:

Transformation A. Let uv be an edge G, $N_G(u) = \{v, w_1, w_2, \ldots, w_s\}$, and w_1, w_2, \ldots, w_s are leaves. $G' = G - \{vw_1, vw_2, \ldots, vw_s\} + \{uw_1, uw_2, \ldots, uw_s\}$, as shown in figure 2.

Lemma 2.1. Let G' be obtained from G by transformation A, then

$$i(G') > i(G)$$
.

Proof. Let $G_0 = G - \{u, w_1, w_2, \dots, w_s\}$. By the definition of the number of independent sets, we have

$$i(G) = |I_{-v}(G)| + |I_v(G)|$$

$$= i(G - \{v\}) + i(G - N_G[v])$$

$$= (1 + 2^s) \cdot i(G_0 - \{v\}) + 2^s \cdot i(G_0 - N_{G_0}[v])$$

$$i(G') = 2^{s+1} \cdot i(G_0 - \{v\}) + i(G_0 - N_{G_0}[v]).$$

Then

$$\Delta = i(G') - i(G)$$

= $(2^s - 1) \cdot (i(G_0 - \{v\}) - i(G_0 - N_{G_0}[v])) > 0$

since $\varphi(X) = X \cup \{v\}$ is an injection from $I(G_0 - N_{G_0}[v])$ to $I(G_0 - \{v\})$. Therefore, i(G') > i(G).

Remark. Repeating transformation A, any (n, n+1)—graph can be changed into an (n, n+1)—graph such that all the edges not on the cycles are pendant edges.

Transformation B. Let u and v be two vertices in G. u_1, u_2, \ldots, u_s are the leaves adjacent to u, v_1, v_2, \ldots, v_t are the leaves adjacent to v. $G' = G - \{uu_1, uu_2, \ldots, uu_s\} + \{vu_1, vu_2, \ldots, vu_s\}, G'' = G - \{vv_1, vv_2, \ldots, vv_t\} + \{uv_1, uv_2, \ldots, uv_t\}$ (figure 3).

Lemma 2.2. Let G' and G'' be obtained from G by transformation B, then either i(G') > i(G) or i(G'') > i(G).

Proof. Let $G_0 = G - \{u_1, u_2, \dots, u_s, v_1, v_2, \dots, v_t\}.$

(i) If u, v are not adjacent in G, then, by the definition of the number of independent sets, we have

Figure 3. Transformation B.

$$\begin{split} i(G) &= i(G - \{v\}) + i(G - N_G[v]) \\ &= 2^{s+t}i(G_0 - \{u,v\}) + 2^ti(G_0 - \{v\} \cup N_{G_0}[u]) \\ &+ 2^si(G_0 - \{u\} \cup N_{G_0}[v]) + i(G_0 - N_{G_0}[v] \cup N_{G_0}[u]) \\ i(G') &= i(G - \{v\}) + i(G - N_G[v]) \\ &= 2^{s+t}(i(G_0 - \{u,v\}) + i(G_0 - \{v\} \cup N_{G_0}[u])) \\ &+ i(G_0 - \{u\} \cup N_{G_0}[v]) + i(G_0 - N_{G_0}[v] \cup N_{G_0}[u]) \\ i(G'') &= i(G - \{v\}) + i(G - N_G[v]) \\ &= 2^{s+t}(i(G_0 - \{u,v\}) + i(G_0 - \{u\} \cup N_{G_0}[v]) \cup N_{G_0}[u]) \\ &+ i(G_0 - \{v\} \cup N_{G_0}[u]) + i(G_0 - N_{G_0}[v] \cup N_{G_0}[u]) \\ &\Delta_1 &= i(G') - i(G) \\ &= (2^s - 1)(2^ti(G_0 - \{v\} \cup N_{G_0}[u]) - i(G_0 - \{u\} \cup N_{G_0}[v])) \\ &\Delta_2 &= i(G'') - i(G) \\ &= (2^t - 1)(2^si(G_0 - \{u\} \cup N_{G_0}[v]) - i(G_0 - \{v\} \cup N_{G_0}[u])). \\ \text{If } \Delta_1 &= i(G') - i(G) \leqslant 0, \text{ then } i(G_0 - \{u\} \cup N_{G_0}[v]) \geqslant 2^ti(G_0 - \{v\} \cup N_{G_0}[u]). \\ \text{So, } \Delta_2 &= i(G''') - i(G) \geqslant (2^t - 1)(2^{s+t} - 1)i(G_0 - \{v\} \cup N_{G_0}[u]) > 0. \\ \text{(ii) } \text{If } u, v \text{ are adjacent in } G, \text{ then } \\ &i(G) &= 2^{s+t}i(G_0 - \{u,v\}) + 2^ti(G_0 - N_{G_0}[u]) + 2^si(G_0 - N_{G_0}[v]) \\ &= 2^{s+t}(i(G_0 - \{u,v\}) + i(G_0 - N_{G_0}[u])) + i(G_0 - N_{G_0}[v]) \\ &= 2^{s+t}(i(G_0 - \{u,v\}) + i(G_0 - N_{G_0}[u])) + i(G_0 - N_{G_0}[v]) \\ &\Delta_1 &= i(G') - i(G) \\ &= (2^s - 1)(2^ti(G_0 - N_{G_0}[u]) - i(G_0 - N_{G_0}[v])) \\ \Delta_2 &= i(G''') - i(G) \\ &= (2^t - 1)(2^si(G_0 - N_{G_0}[v]) - i(G_0 - N_{G_0}[v])). \\ \text{If } \Delta_1 &= i(G') - i(G) \leqslant 0, \text{ then } i(G_0 - N_{G_0}[v]) \geqslant 2^ti(G_0 - N_{G_0}[u]). \\ \text{So, } \Delta_2 &= i(G''') - i(G) \leqslant 0, \text{ then } i(G_0 - N_{G_0}[v]) \geqslant 2^ti(G_0 - N_{G_0}[u]). \\ \text{The proof is completed.} \end{split}$$

Remark. Repeating transformation B, any (n, n + 1)—graph can be changed into an (n, n + 1)—graph such that all the pendant edges are attached to the same vertex.

3. The graph with the largest Merrifield–Simmons index in A(p,q)

In this section, we will find the (n, n+1)-graph with the largest Merrifield-Simmons index in $\mathcal{A}(p, q)$.

Figure 4. The graph $S_n(p,q)$.

Let $S_n(p,q)$ be a graph in $\mathcal{A}(p,q)$ such that n+1-(p+q) pendent edges are attached to the common vertex of C_p and C_q (see figure 4).

Theorem 3.1. If $G \in \mathcal{A}(p,q)$, then $i(G) \leq i(S_n(p,q))$ with the equality if and only if $G \cong S_n(p,q)$.

Proof. First, repeating the transformations A and B on graph G, we can get a graph G' such that all the edges not on the cycles are the pendant edges attached to the same vertex v. By lemmas 2.1 and 2.2, we have $i(G) \leq i(G')$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G. If $G' \ncong S_n(p,q)$, then $v \neq u$, where u is the common vertex of C_p and C_q .

Without loss of the generality, we assume that v is on the cycle C_p and the distance d(u, v) = k - 1.

(i) If u and v are not adjacent (i.e., k > 1), then

$$\begin{split} &i(S_n(p,q))-i(G')\\ &=i(S_n(p,q)-\{v,u\})+i(S_n(p,q)-\{v\}\cup N_{S_n(p,q)}[u])+i(S_n(p,q)\\ &-\{u\}\cup N_{S_n(p,q)}[v])+i(S_n(p,q)-N_{S_n(p,q)}[v]\cup N_{S_n(p,q)}[u])\\ &-i(G'-\{v,u\})-i(G'-\{v\}\cup N_{G'}[u])-i(G'-\{u\}\cup N_{G'}[v])\\ &-i(G'-N_{G'}[v]\cup N_{G'}[u]))\\ &=i(S_n(p,q)-\{v\}\cup N_{S_n(p,q)}[u])+i(S_n(p,q)-\{u\}\cup N_{S_n(p,q)}[v])\\ &-i(G'-\{v\}\cup N_{G'}[u])-i(G'-\{u\}\cup N_{G'}[v])\\ &=i(P_{k-3}\cup P_{p-k-1}\cup P_{q-3})+2^{n+1-p-q}i(P_{k-3}\cup P_{p-k-1}\cup P_{q-1})\\ &-2^{n+1-p-q}i(P_{k-3}\cup P_{p-k-1}\cup P_{q-3})-i(P_{k-3}\cup P_{p-k-1}\cup P_{q-1})\\ &=(2^{n+1-p-q}-1)(i(P_{k-3}\cup P_{p-k-1}\cup P_{q-3}))\geqslant 0 \end{split}$$

with the equality if and only if n = p + q - 1, and $G' \cong S_n(p, q)$.

(ii) If u and v are adjacent (i.e., k = 1), then

$$\begin{split} &i(S_n(p,q)) - i(G') \\ &= i(S_n(p,q) - \{v,u\}) + i(S_n(p,q) - N_{S_n(p,q)}[u]) + i(S_n(p,q) \\ &- N_{S_n(p,q)}[v]) - i(G' - \{v,u\}) - i(G' - N_{G'}[u]) - i(G' - N_{G'}[v]) \\ &= i(S_n(p,q) - N_{S_n(p,q)}[u]) + i(S_n(p,q) - N_{S_n(p,q)}[v]) \\ &- i(G' - N_{G'}[u]) - i(G' - N_{G'}[v]) \\ &= i(P_{p-3} \cup P_{q-3}) + 2^{n+1-p-q}i(P_{p-3} \cup P_{q-1}) \\ &- 2^{n+1-p-q}i(P_{p-3} \cup P_{q-3}) - i(P_{p-3} \cup P_{q-1}) \\ &= (2^{n+1-p-q} - 1)(i(P_{p-3} \cup P_{q-1}) - i(P_{p-3} \cup P_{q-3})) \\ \geqslant 0 \end{split}$$

with the equality if and only if n = p + q - 1, and $G' \cong S_n(p, q)$.

Given $p \ge 3$ and $q \ge 3$, from the theorem above, we know $S_n(p,q)$ is the unique graph with the largest Merrifield–Simmons index in $\mathcal{A}(p,q)$.

Lemma 3.2.
$$i(S_n(p,q)) = 2^{n+1-(p+q)} f(p+1) f(q+1) + f(p-1) f(q-1)$$
.

Proof. Let u be the common vertex of C_p and C_q in $S_n(p,q)$. Then we have

$$i(S_n(p,q)) = i(S_n(p,q) - \{u\}) + i(S_n(p,q) - N_{S_n(p,q)}[u])$$

= $2^{n+1-(p+q)}i(P_{p-1} \cup P_{q-1}) + i(P_{p-3} \cup P_{q-3})$
= $2^{n+1-(p+q)}f(p+1)f(q+1) + f(p-1)f(q-1).$

Lemma 3.3.

- (i) If p > 3, then $i(S_n(p,q)) < i(S_n(p-1,q))$;
- (ii) If q > 3, then $i(S_n(p,q)) < i(S_n(p,q-1))$.

Proof. From the symmetry of p and q, we only need to prove (i). If p > 3, then by lemma 3.2 we have

$$\begin{split} &\Delta = i(S_n(p-1,q)) - i(S_n(p,q)) \\ &= 2^{n+2-(p+q)} f(p) f(q+1) + f(p-2) f(q-1) \\ &- 2^{n+1-(p+q)} f(p+1) f(q+1) - f(p-1) f(q-1) \\ &= 2 \times 2^{n+1-(p+q)} f(p) f(q+1) + f(p-2) f(q-1) \\ &- 2^{n+1-(p+q)} (f(p) + f(p-1)) f(q+1) - (f(p-2) + f(p-3)) f(q-1) \\ &= 2^{n+1-(p+q)} (f(p) - f(p-1)) f(q+1) - f(p-3) f(q-1) \\ &= 2^{n+1-(p+q)} f(p-2) f(q+1) - f(p-3) f(q-1) \\ &= 2^{n+1-(p+q)} (f(p-3) + f(p-4)) f(q+1) - f(p-3) f(q-1) \\ &= 2^{n+1-(p+q)} f(p-4) f(q+1) + f(p-3) (2^{n+1-(p+q)} f(q+1) - f(q-1)) \\ &> 0 \end{split}$$

From theorem 3.1 and lemma 3.3, we know

Figure 5. (a) $T_n^r(p,q)$, (b) $T_n^r(q,p)$, and (c) $T_n(p,q)$.

Theorem 3.4. For all $p \ge 3$ and $q \ge 3$, $S_n(3,3)$ is the unique graph with the largest Merrifield–Simmons index among A(p,q).

4. The graph with the largest Merrifield–Simmons index in $\mathcal{B}(p,q)$

In this section, we will find the (n, n+1)-graph with the largest Merrifield-Simmons index in $\mathcal{B}(p, q)$.

Let $T_n^r(p,q)$ be the (n,n+1)-graph obtaining from connecting C_p and C_q by a path of length r and the other n+1-p-q-r edges are all attached to the common vertex of the path and C_p (see figure 5(a)). And $T_n^r(q,p)$ is showed in figure 5(b).

Theorem 4.1. If $G \in \mathcal{B}(p,q)$, the length of the shortest path connecting C_p and C_q is r, then either as follows:

- (i) $i(G) \leq i(T_n^r(p,q))$ with the equality if and only if $G \cong T_n^r(p,q)$; or
- (ii) $i(G) \leq i(T_n^r(q, p))$ with the equality if and only if $G \cong T_n^r(q, p)$; or
- (iii) $i(G) \le i(T_n(p,q))$ with the equality if and only if $G \cong T_n(p,q)$, where $T_n(p,q)$ is the (n,n+1)-graph obtaining from connecting C_p and C_q by a path uvw of length 3 and the other n-p-q-1 edges are all attached to the vertex w of the path, as showed in figure 5(c).

Proof. Let $W = v_1 v_2, \dots, v_r v_{r+1}$ be the shortest path connecting C_p and C_q , and v_1 the common vertex W and C_p , v_{r+1} the common vertex W and C_q .

Repeating the transformations A and B on graph G, we can get a graph G' in figure 5 such that all the edges not on the cycles are the pendant edges

attached to the same vertex v. By lemmas 2.1 and 2.2, we have $i(G) \leq i(G')$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G.

Case I. v is on the cycle C_p (as showed in figure 5(d)) and the distance $d(v_1, v) = k - 1$.

(i) If v_1 and v are not adjacent (i.e., k > 1), then

$$\begin{split} &i(T_n^r(p,q))-i(G')\\ &=i(T_n^r(p,q)-\{v,v_1\})+i(T_n^r(p,q)-\{v\}\cup N_{T_n^r(p,q)}[v_1])+i(T_n^r(p,q)\\ &-\{v_1\}\cup N_{T_n^r(p,q)}[v])+i(T_n^r(p,q)-N_{T_n^r(p,q)}[v]\cup N_{T_n^r(p,q)}[v_1])\\ &-i(G'-\{v,v_1\})-i(G'-\{v\}\cup N_{G'}[v_1])-i(G'-\{v_1\}\cup N_{G'}[v])\\ &-i(G'-N_{G'}[v]\cup N_{G'}[v_1])\\ &=i(T_n^r(p,q)-\{v\}\cup N_{T_n^r(p,q)}[v_1])+i(T_n^r(p,q)-\{v_1\}\cup N_{T_n^r(p,q)}[v])\\ &-i(G'-\{v\}\cup N_{G'}[v_1])-i(G'-\{v_1\}\cup N_{G'}[v])\\ &=i(P_{k-3}\cup P_{p-k-1}\cup H_1)+2^{n+1-(p+q+r)}i(P_{k-3}\cup P_{p-k-1}\cup H_2)\\ &-2^{n+1-(p+q+r)}i(P_{k-3}\cup P_{p-k-1}\cup H_1)-i(P_{k-3}\cup P_{p-k-1}\cup H_2)\\ &=(2^{n+1-(p+q+r)}-1)\cdot(i(H_2)-i(H_1))\cdot i(P_{k-3}\cup P_{p-k-1})\\ \geqslant 0 \end{split}$$

with the equality if and only if n = p + q + r - 1, and then also $G' \cong T_n^r(p,q)$; where H_2 is the graph deleting v_1 from the subgraph of $T_n^r(p,q)$ consisting of C_q and W and $H_1 = H_2 - \{v_2\}$, and $i(H_2) < i(H_1)$ since any independent set in H_1 is also an independent set in H_2 .

(ii) If v_1 and v are adjacent (i.e., k = 1), then

$$\begin{split} &i(T_n^r(p,q)) - i(G') \\ &= i(T_n^r(p,q) - \{v,v_1\}) + i(T_n^r(p,q) - N_{T_n^r(p,q)}[v_1]) + i(T_n^r(p,q) \\ &- N_{T_n^r(p,q)}[v]) - i(G' - \{v,v_1\}) - i(G' - N_{G'}[v_1]) - i(G' - N_{G'}[v]) \\ &= i(T_n^r(p,q) - N_{T_n^r(p,q)}[v_1]) + i(T_n^r(p,q) - N_{T_n^r(p,q)}[v]) \\ &- i(G' - N_{G'}[v_1]) - i(G' - N_{G'}[v]) \\ &= i(P_{p-3} \cup H_1) + 2^{n+1-(p+q+r)}i(P_{p-3} \cup H_2) \\ &- 2^{n+1-(p+q+r)}i(P_{p-3} \cup H_1) - i(P_{p-3} \cup H_2) \\ &= (2^{n+1-(p+q+r)} - 1) \cdot (i(H_2) - i(H_1)) \cdot i(P_{p-3}) \\ \geqslant 0 \end{split}$$

with the equality if and only if n = p + q + r - 1, and then also $G' \cong T_n^r(p,q)$.

Case II. v is on the cycle C_q (as showed in figure 5(e)).

We can prove that $i(T_n^r(q, p)) \ge i(G)$ with the equality if and only if $G \cong T_n^r(q, p)$ as in the case I.

Case III. v is on the path W (as showed in figure 5(f)). Let $v = v_t$, $1 < t \le r$.

$$\begin{split} &i(T_n(p,q))-i(G')\\ &=i(T_n(p,q)-\{u,w\})+i(T_n(p,q)-\{w\}\cup N_{T_n(p,q)}[u])\\ &+i(T_n(p,q)-\{u\}\cup N_{T_n(p,q)}[w])+i(T_n(p,q)-N_{T_n(p,q)}[w]\cup N_{T_n(p,q)}[u])\\ &-i(G'-\{v_1,v_{r+1}\})-i(G'-\{v_{r+1}\}\cup N_{G'}[v_1])\\ &-i(G'-\{v_1\}\cup N_{G'}[v_{r+1}])-i(G'-N_{G'}[v_{r+1}]\cup N_{G'}[v_1])\\ &=i(P_{p-1}\cup P_{q-1}\cup S_{n-p-q})+i(P_{p-3}\cup P_{q-1}\cup \overline{K_{n-1-p-q}})\\ &+i(P_{p-1}\cup P_{q-3}\cup \overline{K_{n-1-p-q}})+i(P_{p-3}\cup P_{q-3}\cup \overline{K_{n-1-p-q}})\\ &-i(P_{p-1}\cup P_{q-1}\cup R_1)-i(P_{p-3}\cup P_{q-1}\cup R_2)\\ &-i(P_{p-1}\cup P_{q-3}\cup R_3)-i(P_{p-3}\cup P_{q-3}\cup R_4), \end{split}$$

where $R_1 = G' - C_p \cup C_q$, $R_2 = R_1 - \{v_2\}$, $R_3 = R_1 - \{v_r\}$ and $R_4 = R_1 - \{v_2, v_r\}$. Since $i(R_1) \le i(S_{n-p-q})$, $i(R_2) \le i(\overline{K_{n-1-p-q}})$, $i(R_3) \le i(\overline{K_{n-1-p-q}})$ and $i(R_4) \le i(\overline{K_{n-1-p-q}})$, with the equality if and only if $v_2 = v_t = v_r$, i.e., $G' \cong T_n(p,q)$, $i(T_n(p,q)) \ge i(G')$.

Lemma 4.2.

- (i) If $p \ge 5$, then $i(T_n(p,q)) < i(T_n(p-2,q))$;
- (ii) If $q \ge 5$, then $i(T_n(p, q)) < i(T_n(p, q 2))$.

Proof. From the symmetry of p and q, we only need to prove (i). Let u, v be the vertices of degree 3 on the cycles. (u and v are not adjacent.)

$$\begin{split} &i(T_n(p-2,q))-i(T_n(p,q))\\ &=i(T_n(p-2,q)-\{u,v\})+i(T_n(p-2,q)-\{v\}\cup N_{T_n(p-2,q)}[u])\\ &+i(T_n(p-2,q)-\{u\}\cup N_{T_n(p-2,q)}[v])+i(T_n(p-2,q)\\ &-N_{T_n(p-2,q)}[v]\cup N_{T_n(p-2,q)}[u])-i(T_n(p,q)-\{u,v\})-i(T_n(p,q)\\ &-\{v\}\cup N_{T_n(p,q)}[u])-i(T_n(p,q)-\{u\}\cup N_{T_n(p,q)}[v])-i(T_n(p,q)\\ &-N_{T_n(p,q)}[v]\cup N_{T_n(p,q)}[u])\\ &=i(P_{p-3}\cup P_{q-1}\cup S_{n+2-p-q})+i(P_{p-5}\cup P_{q-1}\cup \overline{K_{n+1-p-q}})\\ &+i(P_{p-3}\cup P_{q-3}\cup \overline{K_{n+1-p-q}})+i(P_{p-5}\cup P_{q-3}\cup \overline{K_{n+1-p-q}})\\ &-i(P_{p-1}\cup P_{q-1}\cup S_{n-p-q})-i(P_{p-3}\cup P_{q-1}\cup \overline{K_{n-1-p-q}})\\ &-i(P_{p-1}\cup P_{q-3}\cup \overline{K_{n-1-p-q}})-i(P_{p-3}\cup P_{q-3}\cup \overline{K_{n-1-p-q}}) \end{split}$$

Since

$$\begin{split} &i(P_{p-3} \cup S_{n+2-p-q}) + i(P_{p-5} \cup \overline{K_{n+1-p-q}}) - i(P_{p-1} \cup S_{n-p-q}) \\ &- i(P_{p-3} \cup \overline{K_{n-1-p-q}}) \\ &= (1 + 2^{n+1-p-q}) f(p-1) + 2^{n+1-p-q} f(p-3) - (1 + 2^{n-1-p-q}) f(p+1) \\ &- 2^{n-1-p-q} f(p-1) \\ &= (1 + 4 \times 2^{n-1-p-q}) f(p-1) + 4 \times 2^{n-1-p-q} (f(p-1) - f(p-2)) \\ &- (1 + 2^{n-1-p-q}) (2 f(p-1) + f(p-2)) - 2^{n-1-p-q} f(p-1) \\ &= 5 \times 2^{n-1-p-q} (f(p-1) - f(p-2)) - (f(p-1) + f(p-2)) \\ &= 5 \times 2^{n-1-p-q} f(p-3) - 3 f(p-3) - 2 f(p-4) \\ &> 0 \end{split}$$

and

$$\begin{split} &i(P_{p-3} \cup \overline{K_{n+1-p-q}}) + i(P_{p-5} \cup \overline{K_{n+1-p-q}}) - i(P_{p-1} \cup \overline{K_{n-1-p-q}}) \\ &- i(P_{p-3} \cup \overline{K_{n-1-p-q}}) \\ &= 2^{n+1-p-q} f(p-1) + 2^{n+1-p-q} f(p-3) - 2^{n-1-p-q} f(p+1) \\ &- 2^{n-1-p-q} f(p-1) \\ &= 2^{n-1-p-q} (4 \times f(p-1) + 4 \times (f(p-1) - f(p-2)) - (2f(p-1) + f(p-2)) - f(p-1)) \\ &= 5 \times 2^{n-1-p-q} (f(p-1) - f(p-2)) \\ &> 0, \end{split}$$

we have $i(T_n(p-2, q)) > i(T_n(p, q))$.

From lemma 4.2, it is immediately that

Corollary 4.3.

- (i) If p and q are odd, then $i(T_n(p,q)) \leq i(T_n(3,3))$.
- (ii) If p and q are even, then $i(T_n(p,q)) \le i(T_n(4,4))$.
- (iii) If the parity of p and q is different, then $i(T_n(p,q)) \leq i(T_n(3,4))$ with the equality if and only if $T_n(p,q)$ is one of $T_n(3,3)$, $T_n(3,4)$ and $T_n(4,4)$.

Lemma 4.4. If r > 1, then

$$i(T_n^r(p,q) = 2^{n+1-(p+q+r)} f(p+1) f(q+1) f(r+1) + f(p-1) f(q+1) f(r) + 2^{n+1-(p+q+r)} f(p+1) f(q-1) f(r) + f(p-1) f(q-1) f(r-1);$$

If
$$r=1$$
, then $i(T_n^1(p,q))=2^{n-(p+q)}f(p+1)(f(q+1)+f(q-1))+f(p-1)f(q+1)$.

Proof. Let u and v be the vertices with degree more than two on the cycles C_p and C_q , respectively; and $G = T_n^r(p,q)$.

If $r \ge 2$, u and v are not adjacent. Then

$$\begin{split} i(T_n^r(p,q)) &= i(G - \{u,v\})) + i(G - \{v\} \cup N_G[u]) \\ &+ i(G - \{u\} \cup N_G[v]) + i(G - N_G[u] \cup N_G[v]) \\ &= 2^{n+1-(p+q+r)} i(P_{p-1} \cup P_{q-1} \cup P_{r-1}) + i(P_{p-3} \cup P_{q-1} \cup P_{r-2}) \\ &+ 2^{n+1-(p+q+r)} i(P_{p-1} \cup P_{q-3} \cup P_{r-2}) + i(P_{p-3} \cup P_{q-3} \cup P_{r-3}) \\ &= 2^{n+1-(p+q+r)} f(p+1) f(q+1) f(r+1) + f(p-1) f(q+1) f(r) \\ &+ 2^{n+1-(p+q+r)} f(p+1) f(q-1) f(r) + f(p-1) f(q-1) f(r-1) \end{split}$$

If r = 1, then

$$i(T_n^1(p,q)) = i(G - \{u\}) + i(G - N_G[u])$$

$$= 2^{n-(p+q)}i(P_{p-1} \cup C_q) + i(P_{p-3} \cup P_{q-1})$$

$$= 2^{n-(p+q)}f(p+1)(f(q+1) + f(q-1)) + f(p-1)f(q+1)$$

Lemma 4.5. If
$$r > 1$$
, then $i(T_n^r(p,q)) < i(T_n^{r-1}(p,q))$.

Proof. If r > 2, then

$$\begin{split} &i(T_n^{r-1}(p,q)) - i(T_n^r(p,q)) \\ &= 2 \times 2^{n+1-(p+q+r)} f(p+1) f(q+1) f(r) + f(p-1) f(q+1) f(r-1) \\ &+ 2 \times 2^{n+1-(p+q+r)} f(p+1) f(q-1) f(r-1) + f(p-1) f(q-1) f(r-2) \\ &- 2^{n+1-(p+q+r)} f(p+1) f(q+1) f(r+1) - f(p-1) f(q+1) f(r) \\ &- 2^{n+1-(p+q+r)} f(p+1) f(q-1) f(r) - f(p-1) f(q-1) f(r-1) \\ &= 2^{n+1-(p+q+r)} f(p+1) f(q+1) (f(r) - f(r-1)) \\ &+ f(p-1) f(q+1) (f(r-1) - f(r)) \\ &+ 2^{n+1-(p+q+r)} f(p+1) f(q-1) (f(r-1) - f(r-2)) \\ &+ f(p-1) f(q-1) (f(r-2) - f(r-1)) \\ &> 0. \end{split}$$

If r = 2, then

$$\begin{split} &i(T_n^1(p,q)) - i(T_n^2(p,q)) \\ &= 2^{n-(p+q)} f(p+1) (f(q+1) + f(q-1)) + f(p-1) f(q+1) \\ &- 2^{n+1-(p+q+2)} f(p+1) f(q+1) f(3) - f(p-1) f(q+1) f(2) \\ &- 2^{n+1-(p+q+2)} f(p+1) f(q-1) f(2) - f(p-1) f(q-1) f(1) \\ &= 2^{n+1-(p+q+2)} f(p+1) f(q-1) - f(p-1) f(q-1) \\ &> 0. \end{split}$$

For the graph $T_n^r(q, p)$, the similar results hold. From lemma 4.5, it is immediately that

Corollary 4.6. If r > 1, then $i(T_n^r(p, q)) < i(T_n^1(p, q))$ and $i(T_n^r(q, p)) < i(T_n^1(q, p))$.

Lemma 4.7.

(i) If
$$p > 3$$
, then $i(T_n^1(p,q)) < i(T_n^1(p-1,q))$;

(ii) If
$$q > 3$$
, then $i(T_n^1(p,q)) < i(T_n^1(p,q-1))$;

(iii) If
$$p > 3$$
, then $i(T_n^1(q, p)) < i(T_n^1(q, p - 1))$;

(iv) If
$$q > 3$$
, then $i(T_n^1(q, p)) < i(T_n^1(q - 1, p))$;

(v) If
$$r > 1$$
 or $p > 3$ or $q > 3$, then $i(T_n^r(p,q)) < i(T_n^1(3,3))$.

Proof.

(i)

$$\begin{split} &i(T_n^1(p-1,q)) - i(T_n^1(p,q)) \\ &= 2^{n+1-(p+q)} f(p)(f(q+1) + f(q-1)) + f(p-2)f(q+1) \\ &- 2^{n-(p+q)} f(p+1)(f(q+1) + f(q-1)) - f(p-1)f(q+1) \\ &= 2^{n-(p+q)} (f(q+1) + f(q-1))(f(p) - f(p-1)) \\ &- f(q+1)(f(p-1) - f(p-2)) \\ &= 2^{n-(p+q)} (f(q+1) + f(q-1))f(p-2) - f(q+1)f(p-3) \\ &> 0, \end{split}$$

(ii)

$$\begin{split} &i(T_n^1(p,q-1))-i(T_n^1(p,q))\\ &=2^{n+1-(p+q)}f(p+1)(f(q)+f(q-2))+f(p-1)f(q)\\ &-2^{n-(p+q)}f(p+1)(f(q+1)+f(q-1))-f(p-1)f(q+1)\\ &=2^{n+1-(p+q)}f(p+1)(f(q)+f(q-2))+f(p-1)f(q)\\ &-2^{n-(p+q)}f(p+1)(f(q)+f(q-1)+f(q-2)\\ &+f(q-3))-f(p-1)f(q+1)\\ &=2^{n-(p+q)}f(p+1)(f(q)+f(q-2)-f(q-1)-f(q-3))\\ &-f(p-1)(f(q+1)-f(q))\\ &=2^{n-(p+q)}f(p+1)(f(q-2)+f(q-4))-f(p-1)(f(q-2)+f(q-4)+f(q-5))\\ &>2^{n-(p+q)}f(p+1)f(q-4)-2f(p-1)f(q-4)\\ &>0 \end{split}$$

(iii) and (iv) can be proved similarly. (v) is immediate from (i)-(iv).

Now, we compare the Merrifield–Simmons indices of $T_n^1(3,3)$, $T_n(3,3)$, $T_n(3,4)$, and $T_n(4,4)$. It can be computed out easily that

$$i(T_n^1(3,3)) = 3 \times 2^{n-4} + 3 = 96 \times 2^{n-9} + 3.$$

$$i(T_n(3,3)) = 2^{n-3} + 9 = 64 \times 2^{n-9} + 9.$$

$$i(T_n(3,4)) = 7 \times 2^{n-6} + 15 = 56 \times 2^{n-9} + 15.$$

Figure 6.

$$i(T_n(4,4)) = 49 \times 2^{n-9} + 25.$$

Then $i(T_7^1(3,3)) > i(T_7(3,3))$, $i(T_8^1(3,3)) > i(T_8(3,4)) > i(T_8(3,3))$, and $i(T_n^1(3,3)) > i(T_n(3,3)) > i(T_n(3,4)) > i(T_n(4,4))$ for n > 8. So, we have

Theorem 4.8. The $T_n^1(3,3)$ is the unique graph with the largest Merrifield–Simmons index among all graphs in $\mathcal{B}(p,q)$ for all $p \ge 3$ and $q \ge 3$.

5. The graph with the largest Merrifield–Simmons index in C(p,q,l)

In this section, we will find the (n, n+1)-graph with the largest Merrifield-Simmons index in C(p, q, l).

Let $\theta_n^l(p,q)$ be the graph obtaining from the graph in figure 1(c) by attaching n+1+l-(p+q) to one of its vertices with degree 3 (see figure 6(a)).

Theorem 5.1. Let $G \in \mathcal{C}(p, q, l)$. Then $i(G) \leq i(G_0)$ with the equality if and only if $G \cong G_0$, where G_0 is one of graphs in figure 6(c), (d), and (e).

Proof. Let $W_1 = ux_1x_2...x_{l-1}v$ be the common path of C_p and C_q of the graph G in Figure 6(a), $W_2 = uy_1y_2...y_rv$ and $W_3 = uz_1z_2...z_tv$ the other paths from u to v on C_p and C_q , respectively; r = p - l - 1, t = q - l - 1.

x_i	x_{i-1}	x_{i-2}	$\rho(B)$		
0	0	0	В		
0	0	1	В		
0	1	0	В		
1	0	0	В		
1	0	1	$(B - \{x_i\}) \cup \{x_{i-1}\}$		

Table 1 The mapping $\rho: I(G') \to I(G'')$.

Repeating the transformations A and B on graph G, we can get a graph $G' \in \mathcal{C}(p,q,l)$ such that all the edges not on the cycles are the pendant edges attached to the same vertex v_0 . By lemmas 2.1 and 2.2, we have $i(G) \leq i(G')$ with the equality if and only if all the edges not on the cycles are also the pendant edges attached to the same vertex in G.

Case I. If $v_0 \neq u$, v, without loss of the generality, we may assume that $v_0 = x_i$. We show that $i(G') \leq i(G_1)$ in the following, where G_1 is one of graphs showed in figure 6(c) and (d).

If l > 2, we may assume i > 1.

Let $G'' = (G' - \{x_{i-1}x_{i-2}\}) + \{x_ix_{i-2}\}$. We can show that i(G') < i(G'') by constructing an injective, non-surjective mapping ρ from I(G') to I(G'') as in table 1. The mapping ρ is injective. However, there is no $B \in I(G')$ with $\rho(B) = \{x_{i-1}, x_{i-2}\}$.

We continue this until l = 2.

If l=2, then $v_0=x_1$ and v_0 is adjacent to u and v in G'. We show that $i(G') \le i(G_1)$ in the following:

(i) If
$$t > 1$$
, let $G'' = (G' - \{vz_t, z_t z_{t-1}\}) + \{vz_{t-1}, v_0 z_t\}$). Then

$$\begin{split} &i(G'')-i(G')\\ &=i(G''-\{v_0\})+i(G''-N_{G''}[v_0])\\ &-i(G'-\{v_0\})-i(G'-N_{G'}[v_0])\\ &=2^{n+4-p-q}i(C_{r+t+1})+i(P_r\cup P_{t-1})-2^{n+3-p-q}i(C_{r+t+2})-i(P_r\cup P_t)\\ &=2^{n+4-p-q}(f(r+t)+f(r+t+2))+f(r+2)f(t+1)\\ &-2^{n+3-p-q}(f(r+t+1)+f(r+t+3))-f(r+2)f(t+2)\\ &=2^{n+3-p-q}(f(r+t)+f(r+t+2)-f(r+t-1))-f(r+2)f(t)\\ &=2^{n+3-p-q}(f(r+t)+f(r+t+2)-f(r+t-2))-f(r+2)f(t)\\ &>0 \end{split}$$

since $f(r+t-2) + f(r+t+2) > f(r+t-1) + f(r+t+1) = i(C_{r+t})$ and $f(r+2)f(t) = i(P_r \cup P_{t-2})$, and there are two vertices v_1, v_2 such that $C_{r+t} - \{v_1, v_2\} = P_r \cup P_{t-2}$, so f(r+t) + f(r+t+2) > f(r+2)f(t). And i(G') < i(G'').

The mapping ζ . $I(O) \to I(O)$.				
и	У1	<i>y</i> 2	ξ	
0	0	0	В	
0	0	1	В	
0	1	0	В	
1	0	0	В	
1	0	1	$(B-\{u\})\cup\{y_1\}$	

Table 2 The mapping $\xi: I(G') \to I(G'')$.

(ii) Similarly, if r > 1, let $G'' = (G' - \{vy_r, y_ry_{r-1}\}) + \{vy_{r-1}, v_0y_r\}$, then also i(G') < i(G'').

Repeating (i) and (ii), we have $i(G') < i(G_1)$.

Case II. If $v_0 = u$ or v, without loss of the generality, we may assume that $v_0 = u$. We show that $i(G') \le i(G_2)$ in the following, where G_2 is the graph showed in figure 6(e).

If $G' \ncong G_2$, then $\{r, t, l-1\} \neq \{1, 2, 2\}$. Without loss of the generality, we may assume that $r \ge t \ge l-1$ and $r \ge 3$. Let $G'' = (G' - \{y_1, y_2\}) + \{uy_2\}$.

We construct a mapping ξ from I(G') to I(G'') as in table 2. The mapping ξ is injective. However, there is no $B \in I(G')$ with $\xi(B) = \{y_1, y_2\}$. So, i(G') < i(G'').

And continuing, we can get $i(G') < i(G_2)$.

6. Extremal graph in $\mathcal{G}(n, n+1)$

In this section, we give the upper bound for the Merrifield–Simmons index in $\mathcal{G}(n, n+1)$, and characterize the extremal graph.

Theorem 6.1. Let G be an (n, n+1)-graph, then $i(G) \le 5 \times 2^{n-4} + 1$ with the equality if and only if G is the graph in figure 6(e).

Proof. From theorems 3.4, 4.9, and 5.1, we only need to compare the Merrifield–Simmons indices of $S_n(3,3)$, $T_n^1(3,3)$ and H_1 , H_2 , H_3 , where H_1 , H_2 , and H_3 are the graphs in figure 6(c),(d), and (e), respectively. Computing immediately, we have

$$i(S_n(3,3)) = 9 \times 2^{n-5} + 1$$

$$i(T_n^1(3,3)) = 12 \times 2^{n-6} + 3 = 6 \times 2^{n-5} + 3$$

$$i(H_1) = 7 \times 2^{n-5} + 4$$

$$i(H_2) = 4 \times 2^{n-4} + 2 = 8 \times 2^{n-5} + 2$$

$$i(H_3) = 5 \times 2^{n-4} + 1 = 10 \times 2^{n-5} + 1$$

Therefore, $i(G) \le i(H_3) = 5 \times 2^{n-4} + 1$ with the equality if and only if G is the graph in figure 6(e).

Acknowledgments

Project 10471037 supported by National Natural Science Foundation of China and A Project Supported by Scientific Research Fund of Hunan Provincial Education Department(04B047).

References

- [1] R.E. Merrifield and H.E. Simmons, Theor. Chim. Acta 55 (1980) 55-75.
- [2] R.E. Merrifield and H.E. Simmons, Topological Methods in Chemistry (Wiley, New York, 1989).
- [3] R. Todeschini and V. Consonni, *Handbook of Molecular Descriptors* (Wiley-VCH, Weinheim, 2000).
- [4] H. Prodinger and R.F. Tichy, Fibonacci Quart. 20 (1982) 16-21.
- [5] I. Gutman, Coll. Sci. Pap. Fac. Sci. Kragujevac 11 (1990) 11–18.
- [6] I. Gutman, Rev. Roum. Chim. 36 (1991) 379-388.
- [7] X. Li, Aust. J. Comb. 14 (1996) 15-20.
- [8] Y. Wang, X. Li and I. Gutman, Publ. Inst. Math. (Beograd) 69 (2001) 41–50.
- [9] X. Li, Z. Li and L. Wang, J.Comput. Biol. 10 (2003) 47-55.
- [10] L. Zhang and F. Tian, J. Math. Chem. 34 (2003) 111-122.
- [11] X. Li, H. Zhao and I. Gutman, Math. Commun. Comput. Chem, 54(2) (2005) 389-402.
- [12] A.S. Pedersen and P.D. Vestergaard, Discrete Appl. Math. 152 (2005) 246–256.
- [13] S. Chen and H. Deng, Accepted by J. Math. Chem. (2006).